Problem
Design a Tic-tac-toe game that is played between two players on a n x n grid.
You may assume the following rules:
A move is guaranteed to be valid and is placed on an empty block.
Once a winning condition is reached, no more moves is allowed.
A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board. TicTacToe toe = new TicTacToe(3); toe.move(0, 0, 1); -> Returns 0 (no one wins) |X| | | | | | | // Player 1 makes a move at (0, 0). | | | | toe.move(0, 2, 2); -> Returns 0 (no one wins) |X| |O| | | | | // Player 2 makes a move at (0, 2). | | | | toe.move(2, 2, 1); -> Returns 0 (no one wins) |X| |O| | | | | // Player 1 makes a move at (2, 2). | | |X| toe.move(1, 1, 2); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 2 makes a move at (1, 1). | | |X| toe.move(2, 0, 1); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 1 makes a move at (2, 0). |X| |X| toe.move(1, 0, 2); -> Returns 0 (no one wins) |X| |O| |O|O| | // Player 2 makes a move at (1, 0). |X| |X| toe.move(2, 1, 1); -> Returns 1 (player 1 wins) |X| |O| |O|O| | // Player 1 makes a move at (2, 1). |X|X|X|
Follow up:
Could you do better than O(n2) per move() operation?
class TicTacToe { private int[] rows; private int[] cols; private int diagonal; private int antiDiagonal; private int size; /** Initialize your data structure here. */ public TicTacToe(int n) { rows = new int[n]; cols = new int[n]; diagonal = 0; antiDiagonal = 0; size = n; } /** Player {player} makes a move at ({row}, {col}). @param row The row of the board. @param col The column of the board. @param player The player, can be either 1 or 2. @return The current winning condition, can be either: 0: No one wins. 1: Player 1 wins. 2: Player 2 wins. */ public int move(int row, int col, int player) { int num = player == 1 ? 1 : -1; rows[row] += num; cols[col] += num; if (row == col) diagonal += num; if (row == size-1-col) antiDiagonal += num; if (Math.abs(rows[row]) == size || Math.abs(cols[col]) == size || Math.abs(diagonal) == size || Math.abs(antiDiagonal) == size) return player; return 0; } }
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/72457.html
摘要:題目鏈接這道題找是否有贏的方法和相似,稍微簡(jiǎn)化了。統(tǒng)計(jì)行列和兩個(gè)對(duì)角線的情況,兩個(gè)分別用和來(lái)記。然后判斷是否有一個(gè)人贏只需要的復(fù)雜度。當(dāng)然這么做的前提是假設(shè)所有的都是的,棋盤一個(gè)地方已經(jīng)被占用了,就不能走那個(gè)地方了。 348. Design Tic-Tac-Toe 題目鏈接:https://leetcode.com/problems... 這道題找是否有player贏的方法和N-Que...
摘要:當(dāng)有一行完全只有這兩個(gè)中的其中一個(gè)人時(shí),的絕對(duì)值應(yīng)該等于這個(gè)數(shù)列的長(zhǎng)度,這樣就不需要每次再掃一遍數(shù)組。 題目:Design a Tic-tac-toe game that is played between two players on a n x n grid. You may assume the following rules: A move is guaranteed to b...
摘要:我們?cè)谇拔闹锌紤]的那張圖就來(lái)自這篇文章,之后我們會(huì)用剪枝算法來(lái)改進(jìn)之前的解決方案。剪枝算法的實(shí)現(xiàn)接下來(lái)討論如何修改前面實(shí)現(xiàn)的算法,使其變?yōu)榧糁λ惴ā,F(xiàn)在我們已經(jīng)有了現(xiàn)成的和剪枝算法,只要加上一點(diǎn)兒細(xì)節(jié)就能完成這個(gè)游戲了。 前段時(shí)間用 React 寫了個(gè)2048 游戲來(lái)練練手,準(zhǔn)備用來(lái)回顧下 React 相關(guān)的各種技術(shù),以及試驗(yàn)一下新技術(shù)。在寫這個(gè)2048的過(guò)程中,我考慮是否可以在其中加...
摘要:我們?cè)谇拔闹锌紤]的那張圖就來(lái)自這篇文章,之后我們會(huì)用剪枝算法來(lái)改進(jìn)之前的解決方案。剪枝算法的實(shí)現(xiàn)接下來(lái)討論如何修改前面實(shí)現(xiàn)的算法,使其變?yōu)榧糁λ惴ā,F(xiàn)在我們已經(jīng)有了現(xiàn)成的和剪枝算法,只要加上一點(diǎn)兒細(xì)節(jié)就能完成這個(gè)游戲了。 前段時(shí)間用 React 寫了個(gè)2048 游戲來(lái)練練手,準(zhǔn)備用來(lái)回顧下 React 相關(guān)的各種技術(shù),以及試驗(yàn)一下新技術(shù)。在寫這個(gè)2048的過(guò)程中,我考慮是否可以在其中加...
摘要:題目鏈接題目分析設(shè)計(jì)一個(gè)哈希類。需要有添加元素函數(shù),判斷元素存在的函數(shù),移除元素函數(shù)。思路這真的沒什么好說(shuō)的了我把要存的值作為數(shù)組的鍵存儲(chǔ)。最終代碼若覺得本文章對(duì)你有用,歡迎用愛發(fā)電資助。 D87 705. Design HashSet 題目鏈接 705. Design HashSet 題目分析 設(shè)計(jì)一個(gè)哈希類。 需要有add添加元素函數(shù),contains判斷元素存在的函數(shù),remov...
閱讀 1601·2019-08-30 13:18
閱讀 1583·2019-08-29 12:19
閱讀 2127·2019-08-26 13:57
閱讀 4151·2019-08-26 13:22
閱讀 1192·2019-08-26 10:35
閱讀 2997·2019-08-23 18:09
閱讀 2517·2019-08-23 17:19
閱讀 689·2019-08-23 17:18