Build Post Office Problem
Given a 2D grid, each cell is either an house 1 or empty 0 (the number zero, one), find the place to build a post office, the distance that post office to all the house sum is smallest. Return the smallest distance. Return -1 if it is not possible.
NoticeYou can pass through house and empty.
You only build post office on an empty.
Given a grid:
0 1 0 0
1 0 1 1
0 1 0 0
return 6. (Placing a post office at (1,1), the distance that post office to all the house sum is smallest.)
會(huì)超時(shí)。
public class Solution { public class Node { int x; int y; public Node(int x, int y) { this.x = x; this.y = y; } } public int shortestDistance(int[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) return -1; ArrayListhouse = new ArrayList<>(); ArrayList empty = new ArrayList<>(); for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (grid[i][j] == 1) { house.add(new Node(i, j)); } else { empty.add(new Node(i, j)); } } } if (empty.size() == 0) return -1; int min = Integer.MAX_VALUE; for (Node node: empty) { min = Math.min(min, helper(house, node)); } return min; } private int helper(ArrayList house, Node node) { int dist = 0; for (Node cur: house) { dist += Math.abs(cur.x - node.x) + Math.abs(cur.y - node.y); } return dist; } }
public class Solution { public int shortestDistance(int[][] grid) { int m = grid.length, n = grid[0].length; if (grid == null || m == 0 || n == 0) return -1; ListBuild Post Office II Problemx = new ArrayList<>(); List y = new ArrayList<>(); List xSum = new ArrayList<>(); List ySum = new ArrayList<>(); int res = Integer.MAX_VALUE; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 1) { x.add(i); y.add(j); } } } Collections.sort(x); Collections.sort(y); int total = x.size(); xSum.add(0); ySum.add(0); for (int i = 1; i <= total; i++) { xSum.add(xSum.get(i-1) + x.get(i-1)); ySum.add(ySum.get(i-1) + y.get(i-1)); } for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 0) { int costX = getCost(x, xSum, i, total); int costY = getCost(y, ySum, j, total); if (costX + costY < res) res = costX + costY; } } } return res; } public int getCost(List list, List sum, int pos, int size) { if (size == 0) return 0; if (list.get(0) > pos) return sum.get(size) - pos * size; int l = 0, r = size-1; while (l + 1 < r) { int mid = l + (r-l)/2; if (list.get(mid) <= pos) l = mid; else r = mid-1; } int index = 0; if (list.get(r) <= pos) index = r; else index = l; return sum.get(size) - sum.get(index+1) - pos * (size-index-1) + pos * (index+1) - sum.get(index+1); } }
Given a 2D grid, each cell is either a wall 2, an house 1 or empty 0 (the number zero, one, two), find the place to build a post office, the distance that post office to all the house sum is smallest. Return the smallest distance. Return -1 if it is not possible.
NoticeYou cannot pass through wall and house, but can pass through empty.
You only build post office on an empty.
Given a grid:
0 1 0 0 0 1 0 0 2 1 0 1 0 0 0
return 8, You can build at (1,1). (Placing a post office at (1,1), the distance that post office to all the house sum is smallest.)
ChallengeSolve this problem within O(n^3) time.
Solutionpublic class Solution { class Node { int x, y, dist; public Node(int x, int y, int dist) { this.x = x; this.y = y; this.dist = dist; } } public int shortestDistance(int[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) return -1; int m = grid.length; int n = grid[0].length; Listhouse = new ArrayList<>(); List empty = new ArrayList<>(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 1) house.add(new Node(i, j, 0)); else if (grid[i][j] == 0) empty.add(new Node(i, j, 0)); } } if (empty.size() == 0) return -1; int k = house.size(); int[][][] distance = new int[k][m][n]; for (int i = 0; i < k; i++) { for (int j = 0; j < m; j++) { Arrays.fill(distance[i][j], Integer.MAX_VALUE); } } boolean[][] visited; for (int i = 0; i < k; i++) { visited = new boolean[m][n]; getDistance(house.get(i), distance, i, grid, visited); } int min = Integer.MAX_VALUE; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 0) { int sum = 0; for (int l = 0; l < k; l++) { if (distance[l][i][j] == Integer.MAX_VALUE) { sum = Integer.MAX_VALUE; break; } sum += distance[l][i][j]; } min = Math.min(min, sum); } } } if (min == Integer.MAX_VALUE) return -1; return min; } int[] dx = {-1, 1, 0, 0}; int[] dy = {0, 0, -1, 1}; private void getDistance(Node cur, int[][][] distance, int k, int[][] grid, boolean[][] visited) { Queue q = new LinkedList (); q.offer(cur); visited[cur.x][cur.y] = true; int m = grid.length; int n = grid[0].length; while (!q.isEmpty()) { Node now = q.poll(); for (int i = 0; i < 4; i++) { int nextX = now.x + dx[i]; int nextY = now.y + dy[i]; if (nextX >= 0 && nextX < m && nextY >= 0 && nextY < n && grid[nextX][nextY] == 0 && !visited[nextX][nextY]) { distance[k][nextX][nextY] = now.dist + 1; q.add(new Node(nextX, nextY, now.dist+1)); visited[nextX][nextY] = true; } } } } }
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/66054.html
摘要:題目是要查詢到這個(gè)區(qū)間內(nèi)某一點(diǎn)的。值是從最底層的子節(jié)點(diǎn)值里取最大值。因此,不用太復(fù)雜,遞歸就可以了。與所不同的是,對(duì)所給區(qū)間內(nèi)的元素個(gè)數(shù)求和,而非篩選。這樣就會(huì)出現(xiàn)的情況,視作本身處理。 Segment Tree Query Problem For an integer array (index from 0 to n-1, where n is the size of this ar...
摘要:唯一需要注意的就是的賦值取左右子樹的的較大值,最后一層的獨(dú)立結(jié)點(diǎn)的為對(duì)應(yīng)數(shù)組中的值。 Segment Tree Build I Problem The structure of Segment Tree is a binary tree which each node has two attributes start and end denote an segment / interv...
Subsets Problem Given a set of distinct integers, return all possible subsets. Notice Elements in a subset must be in non-descending order.The solution set must not contain duplicate subsets. Example ...
摘要:整個(gè)過程相當(dāng)于,直接在和里去掉既是又是的。所以最后返回的,一定是只出現(xiàn)過一次的,而出現(xiàn)兩次的都在里,出現(xiàn)三次的都被消去了。 Single Number I Problem Given 2*n + 1 numbers, every numbers occurs twice except one, find it. Example Given [1,2,2,1,3,4,3], return...
摘要:如果不在前兩個(gè)循環(huán)之后的話,那么那多余的一行或一列就會(huì)被加入數(shù)組兩次,造成錯(cuò)誤的結(jié)果。解法和一樣,只是簡化了,甚至可以用一樣的方法去做,只要把也換成。使用,以及最后討論是否為奇數(shù)以判斷中間是否有一個(gè)未循環(huán)的點(diǎn),是這道題的兩個(gè)有趣的地方。 Spiral Matrix I Problem Given a matrix of m x n elements (m rows, n columns...
閱讀 3679·2021-11-24 09:39
閱讀 1288·2021-09-30 09:48
閱讀 3276·2021-09-09 11:51
閱讀 2900·2021-09-08 10:41
閱讀 1340·2019-08-30 14:06
閱讀 2809·2019-08-30 14:01
閱讀 884·2019-08-29 17:11
閱讀 3183·2019-08-29 15:37