摘要:原文來自前端時間遇到個問題,就是判斷百度地圖里的多個任意多邊形區(qū)域是否重復(fù),在網(wǎng)上看了很多的文章都沒有找到解決方案,功夫不負(fù)有心人,在網(wǎng)上找到個可以判斷是否重復(fù)的,但是在包含的情況下就不能判斷,后來自己加入根據(jù)點(diǎn)判斷點(diǎn)是否在多邊形內(nèi)來判斷重
原文來自 taoeer.top
前端時間遇到個問題,就是判斷百度地圖里的多個任意多邊形區(qū)域是否重復(fù),在網(wǎng)上看了很多的文章都沒有找到解決方案,功夫不負(fù)有心人,在網(wǎng)上找到個可以判斷是否重復(fù)的,但是在包含的情況下就不能判斷,后來自己加入根據(jù)點(diǎn)判斷點(diǎn)是否在多邊形內(nèi)來判斷重復(fù),問題已解決,在此把代碼貼出來,供大家參考
//#region 驗(yàn)證兩個面是否相交的算法 (此函數(shù)摘抄自網(wǎng)絡(luò)) function intersectsPolygonAndPolygon (polygon1LinearRings, polygon2LinearRings) { // polygon1LinearRings : array[LinearRing,...] function intersectsByPolygon (polygon1LinearRings, polygon2LinearRings) { var intersect = false; intersect = intersectsByLinearRings(polygon1LinearRings, polygon2LinearRings); if(!intersect) { // check if this poly contains points of the ring/linestring for(i=0, len=polygon2LinearRings.length; i0) { contained = containsPointByLinearRing(point, LinearRings[0]); if( numRings > 1) { // check interior rings var hole; for(var i=1; i 0) { fig = parseFloat(num.toPrecision(sig)); } return fig; } var digs = 14; var px = approx(point.x, digs); var py = approx(point.y, digs); function getX(y, x1, y1, x2, y2) { return (y - y2) * ((x2 - x1) / (y2 - y1)) + x2; } var numSeg = LinearRing.length - 1; var start, end, x1, y1, x2, y2, cx, cy; var crosses = 0; for(var i=0; i = x1 && px <= x2) || // right or vert x1 >= x2 && (px <= x1 && px >= x2)) { // left or vert // point on edge crosses = -1; break; } } // ignore other horizontal edges continue; } cx = approx(getX(py, x1, y1, x2, y2), digs); if(cx == px) { // point on line if(y1 < y2 && (py >= y1 && py <= y2) || // upward y1 > y2 && (py <= y1 && py >= y2)) { // downward // point on edge crosses = -1; break; } } if(cx <= px) { // no crossing to the right continue; } if(x1 != x2 && (cx < Math.min(x1, x2) || cx > Math.max(x1, x2))) { // no crossing continue; } if(y1 < y2 && (py >= y1 && py < y2) || // upward y1 > y2 && (py < y1 && py >= y2)) { // downward ++crosses; } } var contained = (crosses == -1) ? // on edge 1 : // even (out) or odd (in) !!(crosses & 1); return contained; } function intersectsByLinearRings (LinearRing1, LinearRings2) { var intersect = false; var segs1 = getSortedSegments(LinearRing1); var segs2 = getSortedSegments(LinearRings2); var seg1, seg1x1, seg1x2, seg1y1, seg1y2, seg2, seg2y1, seg2y2; // sweep right outer: for(var i=0, len=segs1.length; i seg1x2) { // seg1 still left of seg2 break; } if(seg2.x2 < seg1x1) { // seg2 still left of seg1 continue; } seg2y1 = seg2.y1; seg2y2 = seg2.y2; if(Math.min(seg2y1, seg2y2) > Math.max(seg1y1, seg1y2)) { // seg2 above seg1 continue; } if(Math.max(seg2y1, seg2y2) < Math.min(seg1y1, seg1y2)) { // seg2 below seg1 continue; } if(segmentsIntersect(seg1, seg2)) { intersect = true; break outer; } } } return intersect; } function getSortedSegments(points) { var numSeg = points.length - 1; var segments = new Array(numSeg), point1, point2; for(var i=0; i = 0 && along1 <= 1 && along2 >=0 && along2 <= 1) { // intersect if(!point) { intersection = true; } else { // calculate the intersection point var x = seg1.x1 + (along1 * x12_11); var y = seg1.y1 + (along1 * y12_11); intersection = { "x":x, "y":y }; } } } if(tolerance) { var dist; if(intersection) { if(point) { var segs = [seg1, seg2]; var seg, x, y; // check segment endpoints for proximity to intersection // set intersection to first endpoint within the tolerance outer: for(var i=0; i<2; ++i) { seg = segs[i]; for(var j=1; j<3; ++j) { x = seg["x" + j]; y = seg["y" + j]; dist = Math.sqrt( Math.pow(x - intersection.x, 2) + Math.pow(y - intersection.y, 2) ); if(dist < tolerance) { intersection.x = x; intersection.y = y; break outer; } } } } } else { // no calculated intersection, but segments could be within // the tolerance of one another var segs = [seg1, seg2]; var source, target, x, y, p, result; // check segment endpoints for proximity to intersection // set intersection to first endpoint within the tolerance outer: for(var i=0; i<2; ++i) { source = segs[i]; target = segs[(i+1)%2]; for(var j=1; j<3; ++j) { p = {x: source["x"+j], y: source["y"+j]}; result = distanceToSegment(p, target); if(result.distance < tolerance) { if(point) { intersection = { "x":p.x, "y":p.y }; } else { intersection = true; } break outer; } } } } } return intersection; }; function distanceToSegment(point, segment) { var result = distanceSquaredToSegment(point, segment); result.distance = Math.sqrt(result.distance); return result; }; function distanceSquaredToSegment(point, segment) { var x0 = point.x; var y0 = point.y; var x1 = segment.x1; var y1 = segment.y1; var x2 = segment.x2; var y2 = segment.y2; var dx = x2 - x1; var dy = y2 - y1; var along = ((dx * (x0 - x1)) + (dy * (y0 - y1))) / (Math.pow(dx, 2) + Math.pow(dy, 2)); var x, y; if(along <= 0.0) { x = x1; y = y1; } else if(along >= 1.0) { x = x2; y = y2; } else { x = x1 + along * dx; y = y1 + along * dy; } return { distance: Math.pow(x - x0, 2) + Math.pow(y - y0, 2), x: x, y: y, along: along }; } return intersectsByPolygon(polygon1LinearRings, polygon2LinearRings); } //#endregion function railsIsOverlap (rails) { var i, j, k, v, l, n; if (rails.length < 2) { return false; } for (i = 0, j = rails.length - 1; i < j; i++) { var rail = rails[i]; var railPath = rail.getPath(); for (k = i + 1, v = rails.length; k < v; k++) { var railed = rails[k]; var railedPath = railed.getPath(); for (l = 0 , n = railPath.length; l < n; l ++) { if (BMapLib.GeoUtils.isPointInPolygon(new BMap.Point(railPath[l].lng, railPath[l].lat), railed)) { layer.alert("片區(qū)不能重復(fù)"); return true; } } for (l = 0, n = railedPath.length; l < n; l ++) { if (BMapLib.GeoUtils.isPointInPolygon(new BMap.Point(railedPath[l].lng, railedPath[l].lat), rail)) { // console.log(53) layer.alert("片區(qū)不能重復(fù)"); return true; } } } } var lines = []; for ( i = 0 ; i < rails.length; i ++) { var line = rails[i].getPath(); lines.push([]); for (j = 0 ;j < line.length ; j ++) { var p = { x: line[j].lng, y: line[j].lat }; lines[i].push(p); } lines[i].push(lines[i][0]) } for (i = 0; i < lines.length - 1; i ++) { var p1 = lines[i]; for (j = i + 1; j < lines.length; j ++) { var p2 = lines[j]; if (intersectsPolygonAndPolygon(p1,p2)) { layer.alert("片區(qū)不能重復(fù)!"); return true; } } } return false; }
使用時直接調(diào)用railsIsOverlap函數(shù)就行,參數(shù)是多邊形數(shù)組
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/50283.html
摘要:原文來自前端時間遇到個問題,就是判斷百度地圖里的多個任意多邊形區(qū)域是否重復(fù),在網(wǎng)上看了很多的文章都沒有找到解決方案,功夫不負(fù)有心人,在網(wǎng)上找到個可以判斷是否重復(fù)的,但是在包含的情況下就不能判斷,后來自己加入根據(jù)點(diǎn)判斷點(diǎn)是否在多邊形內(nèi)來判斷重 原文來自 taoeer.top 前端時間遇到個問題,就是判斷百度地圖里的多個任意多邊形區(qū)域是否重復(fù),在網(wǎng)上看了很多的文章都沒有找到解決方案,功夫不...
摘要:原文鏈接前些日的一個小需求用戶在后臺劃不規(guī)則區(qū)域,區(qū)域之間不能重疊,如圖判斷分兩步判斷多變形是否有相交線段,無則進(jìn)行第二步判斷公式判斷多變形之間是否存在頂點(diǎn)與多邊形的包含關(guān)系代碼如下點(diǎn)線面線段是否相交判斷兩多 原文鏈接: Fyerls Blog 前些日的一個小需求:用戶在后臺劃不規(guī)則區(qū)域,區(qū)域之間不能重疊,如圖showImg(https://segmentfault.com/img/b...
摘要:本篇目錄使用入門簡單使用流程鏈家地圖找房效果區(qū)域點(diǎn)位氣泡數(shù)據(jù)結(jié)構(gòu)實(shí)現(xiàn)方法區(qū)域邊界獲取區(qū)域點(diǎn)位經(jīng)緯度獲取區(qū)域邊界小結(jié)最近由于項(xiàng)目需要,開始調(diào)研如何使用百度地圖實(shí)現(xiàn)類似于鏈家的地圖找房的功能,從而開始學(xué)習(xí)百度地圖相關(guān)內(nèi)容。 本篇目錄: 使用入門 簡單使用流程 鏈家地圖找房效果 區(qū)域點(diǎn)位氣泡 數(shù)據(jù)結(jié)構(gòu) 實(shí)現(xiàn) addOverlay方法 區(qū)域邊界 獲取區(qū)域點(diǎn)位經(jīng)緯度 獲取區(qū)域邊...
摘要:百度地圖百度地圖作為項(xiàng)目中地圖可視化最重要的一部分,不止其為國人自己的地圖,還因?yàn)槠渫晟频募夹g(shù)文檔案例和多樣化的開源插件等上有的組件可以直接使用,有興趣的同學(xué)可以直接上手這里不采用已經(jīng)封裝好的地圖組件,而是從零開始,采用原生的百度地圖一 百度地圖 百度地圖作為項(xiàng)目中地圖可視化最重要的一部分,不止其為國人自己的地圖,還因?yàn)槠渫晟频募夹g(shù)文檔案例和多樣化的開源插件(echarts、Mapv等...
閱讀 3467·2023-04-26 00:39
閱讀 4073·2021-09-22 10:02
閱讀 2555·2021-08-09 13:46
閱讀 1108·2019-08-29 18:40
閱讀 1455·2019-08-29 18:33
閱讀 781·2019-08-29 17:14
閱讀 1523·2019-08-29 12:40
閱讀 2983·2019-08-28 18:07