摘要:函數(shù)將單元格內(nèi)容以形式呈現(xiàn)。自動(dòng)評(píng)論代碼自動(dòng)注釋單元格中的選定行,再次命中組合將取消注釋相同的代碼行。如果需要恢復(fù)整個(gè)已刪除的單元格,請(qǐng)按或撤消刪除單元格。
編譯:小七、蔣寶尚
一些小提示和小技巧可能是非常有用的,特別是在編程領(lǐng)域。有時(shí)候使用一點(diǎn)點(diǎn)黑客技術(shù),既可以節(jié)省時(shí)間,還可能挽救“生命”。
一個(gè)小小的快捷方式或附加組件有時(shí)真是天賜之物,并且可以成為真正的生產(chǎn)力助推器。所以,這里有一些小提示和小技巧,有些可能是新的,但我相信在下一個(gè)數(shù)據(jù)分析項(xiàng)目中會(huì)讓你非常方便。
Pandas中數(shù)據(jù)框數(shù)據(jù)的Profiling過(guò)程
Profiling(分析器)是一個(gè)幫助我們理解數(shù)據(jù)的過(guò)程,而Pandas Profiling是一個(gè)Python包,它可以簡(jiǎn)單快速地對(duì)Pandas 的數(shù)據(jù)框數(shù)據(jù)進(jìn)行探索性數(shù)據(jù)分析。
Pandas中df.describe和http://df.info函數(shù)可以實(shí)現(xiàn)EDA過(guò)程第一步。但是,它們只提供了對(duì)數(shù)據(jù)非?;镜母攀?,對(duì)于大型數(shù)據(jù)集沒(méi)有太大幫助。而Pandas中的Profiling功能簡(jiǎn)單通過(guò)一行代碼就能顯示大量信息,且在交互式HTML報(bào)告中也是如此。
對(duì)于給定的數(shù)據(jù)集,Pandas中的profiling包計(jì)算了以下統(tǒng)計(jì)信息:
由Pandas Profiling包計(jì)算出的統(tǒng)計(jì)信息包括直方圖、眾數(shù)、相關(guān)系數(shù)、分位數(shù)、描述統(tǒng)計(jì)量、其他信息——類型、單一變量值、缺失值等。
安裝
用pip安裝或者用conda安裝
pipinstall pandas-profilingcondainstall -c anaconda pandas-profiling
用法
下面代碼是用很久以前的泰坦尼克數(shù)據(jù)集來(lái)演示多功能Python分析器的結(jié)果。
#importing the necessary packagesimport pandas as pdimport pandas_profilingdf = pd.read_csv("titanic/train.csv")pandas_profiling.ProfileReport(df)
一行代碼就能實(shí)現(xiàn)在Jupyter Notebook中顯示完整的數(shù)據(jù)分析報(bào)告,該報(bào)告非常詳細(xì),且包含了必要的圖表信息。
還可以使用以下代碼將報(bào)告導(dǎo)出到交互式HTML文件中。
profile = pandas_profiling.ProfileReport(df)profile.to_file(outputfile="Titanic data profiling.html")
Pandas實(shí)現(xiàn)交互式作圖
Pandas有一個(gè)內(nèi)置的.plot函數(shù)作為DataFrame類的一部分。但是,使用此功能呈現(xiàn)的可視化不是交互式的,這使得它沒(méi)那么吸引人。同樣,使用pandas.DataFrame.plot函數(shù)繪制圖表也不能實(shí)現(xiàn)交互。如果我們需要在不對(duì)代碼進(jìn)行重大修改的情況下用Pandas繪制交互式圖表怎么辦呢?這個(gè)時(shí)候就可以用Cufflinks庫(kù)來(lái)實(shí)現(xiàn)。
Cufflinks庫(kù)可以將有強(qiáng)大功能的plotly和擁有靈活性的pandas結(jié)合在一起,非常便于繪圖。下面就來(lái)看在pandas中如何安裝和使用Cufflinks庫(kù)。
安裝
pip install plotly# Plotly is a pre-requisite before installing cufflinkspip install cufflinks#importing Pandas#importing plotly and cufflinks in offline modeimport cufflinks as cfimport plotly.offlinecf.go_offlinecf.set_config_file(offline=False, world_readable=True)
是時(shí)候展示泰坦尼克號(hào)數(shù)據(jù)集的魔力了。
df.iplot
df.iplot vsdf.plot
右側(cè)的可視化顯示了靜態(tài)圖表,而左側(cè)圖表是交互式的,更詳細(xì),并且所有這些在語(yǔ)法上都沒(méi)有任何重大更改。
Magic命令
Magic命令是Jupyter notebook中的一組便捷功能,旨在解決標(biāo)準(zhǔn)數(shù)據(jù)分析中的一些常見(jiàn)問(wèn)題。使用命令%lsmagic可以看到所有的可用命令。
所有可用的Magic命令列表
Magic命令有兩種:行magic命令(line magics),以單個(gè)%字符為前綴,在單行輸入操作;單元magic命令(cell magics),以雙%%字符為前綴,可以在多行輸入操作。如果設(shè)置為1,則不用鍵入%即可調(diào)用Magic函數(shù)。
接下來(lái)看一些在常見(jiàn)數(shù)據(jù)分析任務(wù)中可能用到的命令:
% pastebin
%pastebin將代碼上傳到Pastebin并返回url。Pastebin是一個(gè)在線內(nèi)容托管服務(wù),可以存儲(chǔ)純文本,如源代碼片段,然后通過(guò)url可以與其他人共享。事實(shí)上,Github gist也類似于pastebin,只是有版本控制。
在file.py文件中寫一個(gè)包含以下內(nèi)容的python腳本,并試著運(yùn)行看看結(jié)果。
#file.pydeffoo(x):return x
在Jupyter Notebook中使用%pastebin生成一個(gè)pastebin url。
%matplotlib notebook
函數(shù)用于在Jupyter notebook中呈現(xiàn)靜態(tài)matplotlib圖。用notebook替換inline,可以輕松獲得可縮放和可調(diào)整大小的繪圖。但記得這個(gè)函數(shù)要在導(dǎo)入matplotlib庫(kù)之前調(diào)用。
%run
用%run函數(shù)在notebook中運(yùn)行一個(gè)python腳本試試。
%run file.py%%writefile
%% writefile是將單元格內(nèi)容寫入文件中。以下代碼將腳本寫入名為foo.py的文件并保存在當(dāng)前目錄中。
%%latex
%%latex函數(shù)將單元格內(nèi)容以LaTeX形式呈現(xiàn)。此函數(shù)對(duì)于在單元格中編寫數(shù)學(xué)公式和方程很有用。
查找并解決錯(cuò)誤
交互式調(diào)試器也是一個(gè)神奇的功能,我把它多帶帶定義了一類。如果在運(yùn)行代碼單元時(shí)出現(xiàn)異常,請(qǐng)?jiān)谛滦兄墟I入%debug并運(yùn)行它。這將打開(kāi)一個(gè)交互式調(diào)試環(huán)境,它能直接定位到發(fā)生異常的位置。還可以檢查程序中分配的變量值,并在此處執(zhí)行操作。退出調(diào)試器單擊q即可。
Printing也有小技巧
如果您想生成美觀的數(shù)據(jù)結(jié)構(gòu),pprint是首選。它在打印字典數(shù)據(jù)或JSON數(shù)據(jù)時(shí)特別有用。接下來(lái)看一個(gè)使用print和pprint來(lái)顯示輸出的示例。
讓你的筆記脫穎而出
我們可以在您的Jupyter notebook中使用警示框/注釋框來(lái)突出顯示重要內(nèi)容或其他需要突出的內(nèi)容。注釋的顏色取決于指定的警報(bào)類型。只需在需要突出顯示的單元格中添加以下任一代碼或所有代碼即可。
藍(lán)色警示框:信息提示
黃色警示框:警告
綠色警示框:成功
紅色警示框:高危
打印單元格所有代碼的輸出結(jié)果
假如有一個(gè)Jupyter Notebook的單元格,其中包含以下代碼行:
In[1]: 10+511+6Out[1]: 17
單元格的正常屬性是只打印最后一個(gè)輸出,而對(duì)于其他輸出,我們需要添加print函數(shù)。然而通過(guò)在notebook頂部添加以下代碼段可以一次打印所有輸出。
添加代碼后所有的輸出結(jié)果就會(huì)一個(gè)接一個(gè)地打印出來(lái)。
In[1]: 10+511+612+7Out[1]: 15Out[1]: 17Out[1]: 19
恢復(fù)原始設(shè)置:
InteractiveShell.ast_node_interactivity = "last_expr"
使用"i"選項(xiàng)運(yùn)行python腳本
從命令行運(yùn)行python腳本的典型方法是:python hello.py。但是,如果在運(yùn)行相同的腳本時(shí)添加-i,例如python -i hello.py,就能提供更多優(yōu)勢(shì)。接下來(lái)看看結(jié)果如何。
首先,即使程序結(jié)束,python也不會(huì)退出解釋器。因此,我們可以檢查變量的值和程序中定義的函數(shù)的正確性。
其次,我們可以輕松地調(diào)用python調(diào)試器,因?yàn)槲覀內(nèi)匀辉诮忉屍髦校?/p>
import pdbpdb.pm
這能定位異常發(fā)生的位置,然后我們可以處理異常代碼。
自動(dòng)評(píng)論代碼
Ctrl / Cmd + /自動(dòng)注釋單元格中的選定行,再次命中組合將取消注釋相同的代碼行。
刪除容易恢復(fù)難
你有沒(méi)有意外刪除過(guò)Jupyter notebook中的單元格?如果答案是肯定的,那么可以掌握這個(gè)撤消刪除操作的快捷方式。
如果您刪除了單元格的內(nèi)容,可以通過(guò)按CTRL / CMD + Z輕松恢復(fù)它。
如果需要恢復(fù)整個(gè)已刪除的單元格,請(qǐng)按ESC + Z或EDIT>撤消刪除單元格。
結(jié)論
在本文中,我列出了使用Python和Jupyter notebook時(shí)收集的一些小提示。我相信它們會(huì)對(duì)你有用,能讓你有所收獲,從而實(shí)現(xiàn)輕松編碼!
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/44139.html
摘要:于是乎,冰河寫了一個(gè)腳本完美去除了桌面圖標(biāo)煩人的小箭頭。今天,給大家分享一個(gè)如何完美去除桌面快捷圖標(biāo)小箭頭的技巧,希望能夠給大家?guī)?lái)幫助。這種方法不會(huì)導(dǎo)致任何問(wèn)題可放心使用,冰河已經(jīng)親自測(cè)試過(guò)了。 ...
摘要:如果你也是學(xué)習(xí)愛(ài)好者,今天講述的個(gè)小技巧,真挺香歡迎收藏學(xué)習(xí),喜歡點(diǎn)贊支持。因此,鍵將成為值,而值將成為鍵。幸運(yùn)的是,這可以通過(guò)一行代碼快速完成。因此,我們的代碼不會(huì)因錯(cuò)誤而終止。 ...
摘要:勤學(xué)學(xué)習(xí)效率與效果取決于執(zhí)行力。這一步學(xué)習(xí)的正確姿勢(shì)是在實(shí)踐操作中發(fā)掘問(wèn)題,然后帶著問(wèn)題找答案。拆分任務(wù)將目標(biāo)分解成具體可執(zhí)行的學(xué)習(xí)任務(wù)。勤學(xué)強(qiáng)大的執(zhí)行力是學(xué)習(xí)的根本保障。分享復(fù)述檢驗(yàn)學(xué)習(xí)成果,提高學(xué)習(xí)效果的最好方法。 showImg(https://segmentfault.com/img/bVbcPGZ?w=256&h=256); 前段時(shí)間和大家一起分享了一篇關(guān)于學(xué)習(xí)方法內(nèi)容《大牛...
此專欄文章是對(duì)力扣上算法題目各種方法的總結(jié)和歸納, 整理出最重要的思路和知識(shí)重點(diǎn)并以思維導(dǎo)圖形式呈現(xiàn), 當(dāng)然也會(huì)加上我對(duì)導(dǎo)圖的詳解. 目的是為了更方便快捷的記憶和回憶算法重點(diǎn)(不用每次都重復(fù)看題解), 畢竟算法不是做了一遍就能完全記住的. 所以本文適合已經(jīng)知道解題思路和方法, 想進(jìn)一步加強(qiáng)理解和記憶的朋友, 并不適合第一次接觸此題的朋友(可以根據(jù)題號(hào)先去力扣看看官方題解, 然后再看本文內(nèi)容). 關(guān)...
閱讀 3771·2021-09-22 15:49
閱讀 3317·2021-09-08 09:35
閱讀 1430·2019-08-30 15:55
閱讀 2332·2019-08-30 15:44
閱讀 722·2019-08-29 16:59
閱讀 1608·2019-08-29 16:16
閱讀 491·2019-08-28 18:06
閱讀 903·2019-08-27 10:55