成人国产在线小视频_日韩寡妇人妻调教在线播放_色成人www永久在线观看_2018国产精品久久_亚洲欧美高清在线30p_亚洲少妇综合一区_黄色在线播放国产_亚洲另类技巧小说校园_国产主播xx日韩_a级毛片在线免费

資訊專欄INFORMATION COLUMN

marshmallow快速上手

jhhfft / 652人閱讀

摘要:方法對應(yīng)的是方法,它反序列化一個字典為數(shù)據(jù)結(jié)構(gòu)。某些例如和內(nèi)置了驗(yàn)證器驗(yàn)證集合時,錯誤字典將基于無效字段的索引作為鍵通過給的參數(shù)傳遞對象,可以執(zhí)行額外的驗(yàn)證驗(yàn)證函數(shù)可以返回布爾值或拋出異常。

快速上手 Declaring Schemas

首先創(chuàng)建一個基礎(chǔ)的user“模型”(只是為了演示,并不是真正的模型):

import datetime as dt

class User(object):
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_at = dt.datetime.now()

    def __repr__(self):
        return "".format(self=self)

然后通過定義一個映射屬性名稱到Field對象的類創(chuàng)建schema

from marshmallow import Schema, fields

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()
Serializing Objects ("Dumping")

傳遞對象到創(chuàng)建的schema的dump方法,返回一個序列化字典對象(和一個錯誤字典對象,下文講):

from marshmallow import pprint

user = User(name="Monty", email="[email protected]")
schema = UserSchema()
result = schema.dump(user)
pprint(result.data)
# {"name": "Monty",
#  "email": "[email protected]",
#  "created_at": "2014-08-17T14:54:16.049594+00:00"}

也可以使用dumps方法序列化對象為JSON字符串:

json_result = schema.dumps(user)
pprint(json_result.data)
# "{"name": "Monty", "email": "[email protected]", "created_at": "2014-08-17T14:54:16.049594+00:00"}"
Filtering output

使用only參數(shù)指定要序列化輸出的字段:

summary_schema = UserSchema(only=("name", "email"))
summary_schema.dump(user).data
# {"name": "Monty Python", "email": "[email protected]"}

使用exclude參數(shù)指定不進(jìn)行序列化輸出的字段。

Deserializing Objects ("Loading")

dump方法對應(yīng)的是load方法,它反序列化一個字典為python數(shù)據(jù)結(jié)構(gòu)。

load方法默認(rèn)返回一個fields字段和反序列化值對應(yīng)的字典對象:

from pprint import pprint

user_data = {
    "created_at": "2014-08-11T05:26:03.869245",
    "email": u"[email protected]",
    "name": u"Ken"
}
schema = UserSchema()
result = schema.load(user_data)
pprint(result.data)
# {"name": "Ken",
#  "email": "[email protected]",
#  "created_at": datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)}
Deserializing to Objects

Schema子類中定義一個方法并用post_load裝飾,該方法接收一個要反序列化的數(shù)據(jù)字典返回原始python對象:

from marshmallow import Schema, fields, post_load

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

    @post_load
    def make_user(self, data):
        return User(**data)

現(xiàn)在調(diào)用load方法將返回一個User對象:

user_data = {
    "name": "Ronnie",
    "email": "[email protected]"
}
schema = UserSchema()
result = schema.load(user_data)
result.data  # => 
Handling Collections of Objects

可迭代的對象集合也可以進(jìn)行序列化和反序列化。只需要設(shè)置many=True

user1 = User(name="Mick", email="[email protected]")
user2 = User(name="Keith", email="[email protected]")
users = [user1, user2]
schema = UserSchema(many=True)
result = schema.dump(users)  # OR UserSchema().dump(users, many=True)
result.data
# [{"name": u"Mick",
#   "email": u"[email protected]",
#   "created_at": "2014-08-17T14:58:57.600623+00:00"}
#  {"name": u"Keith",
#   "email": u"[email protected]",
#   "created_at": "2014-08-17T14:58:57.600623+00:00"}]
Validation

Schema.load()Schema.loads()返回值的第二個元素是一個驗(yàn)證錯誤的字典。某些fields例如EmailURL內(nèi)置了驗(yàn)證器:

data, errors = UserSchema().load({"email": "foo"})
errors  # => {"email": [""foo" is not a valid email address."]}
# OR, equivalently
result = UserSchema().load({"email": "foo"})
result.errors  # => {"email": [""foo" is not a valid email address."]}

驗(yàn)證集合時,錯誤字典將基于無效字段的索引作為鍵:

class BandMemberSchema(Schema):
    name = fields.String(required=True)
    email = fields.Email()

user_data = [
    {"email": "[email protected]", "name": "Mick"},
    {"email": "invalid", "name": "Invalid"},  # invalid email
    {"email": "[email protected]", "name": "Keith"},
    {"email": "[email protected]"},  # missing "name"
]

result = BandMemberSchema(many=True).load(user_data)
result.errors
# {1: {"email": [""invalid" is not a valid email address."]},
#  3: {"name": ["Missing data for required field."]}}

通過給fields的validate參數(shù)傳遞callable對象,可以執(zhí)行額外的驗(yàn)證:

class ValidatedUserSchema(UserSchema):
    # NOTE: This is a contrived example.
    # You could use marshmallow.validate.Range instead of an anonymous function here
    age = fields.Number(validate=lambda n: 18 <= n <= 40)

in_data = {"name": "Mick", "email": "[email protected]", "age": 71}
result = ValidatedUserSchema().load(in_data)
result.errors  # => {"age": ["Validator (71.0) is False"]}

驗(yàn)證函數(shù)可以返回布爾值或拋出ValidationError異常。如果是拋出異常,其信息將保存在錯誤字典中:

from marshmallow import Schema, fields, ValidationError

def validate_quantity(n):
    if n < 0:
        raise ValidationError("Quantity must be greater than 0.")
    if n > 30:
        raise ValidationError("Quantity must not be greater than 30.")

class ItemSchema(Schema):
    quantity = fields.Integer(validate=validate_quantity)

in_data = {"quantity": 31}
result, errors = ItemSchema().load(in_data)
errors  # => {"quantity": ["Quantity must not be greater than 30."]}
Field Validators as Methods

使用validates裝飾器注冊方法驗(yàn)證器:

from marshmallow import fields, Schema, validates, ValidationError

class ItemSchema(Schema):
    quantity = fields.Integer()

    @validates("quantity")
    def validate_quantity(self, value):
        if value < 0:
            raise ValidationError("Quantity must be greater than 0.")
        if value > 30:
            raise ValidationError("Quantity must not be greater than 30.")
strict Mode

在schema構(gòu)造器或class Meta中設(shè)置strict=True,遇到不合法數(shù)據(jù)時將拋出異常,通過ValidationError.messages屬性可以訪問驗(yàn)證錯誤的字典:

from marshmallow import ValidationError

try:
    UserSchema(strict=True).load({"email": "foo"})
except ValidationError as err:
    print(err.messages)# => {"email": [""foo" is not a valid email address."]}
Required Fields

設(shè)置required=True可以定義一個必要字段,調(diào)用Schema.load()方法時如果字段值缺失將驗(yàn)證失敗并保存錯誤信息。

error_messages參數(shù)傳遞一個dict對象可以自定義必要字段的錯誤信息:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(
        required=True,
        error_messages={"required": "Age is required."}
    )
    city = fields.String(
        required=True,
        error_messages={"required": {"message": "City required", "code": 400}}
    )
    email = fields.Email()

data, errors = UserSchema().load({"email": "[email protected]"})
errors
# {"name": ["Missing data for required field."],
#  "age": ["Age is required."],
#  "city": {"message": "City required", "code": 400}}
Partial Loading

通過指定partial參數(shù),可以忽略某些缺失字段的required檢查:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({"age": 42}, partial=("name",))
# OR UserSchema(partial=("name",)).load({"age": 42})
data, errors  # => ({"age": 42}, {})

或者設(shè)置partial=True忽略所有缺失字段的required檢查:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({"age": 42}, partial=True)
# OR UserSchema(partial=True).load({"age": 42})
data, errors  # => ({"age": 42}, {})
Schema.validate

使用Schema.validate()可以只驗(yàn)證輸入數(shù)據(jù)而不反序列化:

errors = UserSchema().validate({"name": "Ronnie", "email": "invalid-email"})
errors  # {"email": [""invalid-email" is not a valid email address."]}
Specifying Attribute Names

默認(rèn)情況下schema序列化處理和field名稱相同的對象屬性。對于屬性和field不相同的場景,通過attribute參數(shù)指定field處理哪個屬性:

class UserSchema(Schema):
    name = fields.String()
    email_addr = fields.String(attribute="email")
    date_created = fields.DateTime(attribute="created_at")

user = User("Keith", email="[email protected]")
ser = UserSchema()
result, errors = ser.dump(user)
pprint(result)
# {"name": "Keith",
#  "email_addr": "[email protected]",
#  "date_created": "2014-08-17T14:58:57.600623+00:00"}
Specifying Deserialization Keys

默認(rèn)情況下schema反序列化處理鍵和field名稱相同的字典。可以通過load_from參數(shù)指定額外處理的字典鍵值:

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email(load_from="emailAddress")

data = {
    "name": "Mike",
    "emailAddress": "[email protected]"
}
s = UserSchema()
result, errors = s.load(data)
#{"name": u"Mike",
# "email": "[email protected]"}
Specifying Serialization Keys

如果要序列化輸出不想使用field名稱作為鍵,可以通過dump_to參數(shù)指定(和load_from相反):

class UserSchema(Schema):
    name = fields.String(dump_to="TheName")
    email = fields.Email(load_from="CamelCasedEmail", dump_to="CamelCasedEmail")

data = {
    "name": "Mike",
    "email": "[email protected]"
}
s = UserSchema()
result, errors = s.dump(data)
#{"TheName": u"Mike",
# "CamelCasedEmail": "[email protected]"}
Refactoring: Implicit Field Creation

當(dāng)schema中有很多屬性時,為每個屬性指定field類型會產(chǎn)生大量的重復(fù)工作,尤其是大部分屬性為原生的python數(shù)據(jù)類型時。

class Meta允許開發(fā)人員指定序列化哪些屬性,Marshmallow會基于屬性類型選擇合適的field類型:

# 重構(gòu)UserSchema
class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())

    class Meta:
        fields = ("name", "email", "created_at", "uppername")


user = User(name="erika", email="[email protected]")
schema = UserSchema()
result = schema.dump(user)
print(result.data)

# {"created_at": "2019-05-20T15:45:27.760000+00:00", "uppername": "ERIKA", "name": "erika", "email": "[email protected]"}

除了顯式聲明的field外,使用additional選項(xiàng)可以指定還要包含哪些fields。以下代碼等同于上面的代碼:

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        # No need to include "uppername"
        additional = ("name", "email", "created_at")
Ordering Output

設(shè)置ordered=True可以維護(hù)序列化輸出的field順序,此時序列化字典為collections.OrderedDict類型:

from collections import OrderedDict

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        fields = ("name", "email", "created_at", "uppername")
        ordered = True

u = User("Charlie", "[email protected]")
schema = UserSchema()
result = schema.dump(u)
assert isinstance(result.data, OrderedDict)
# marshmallow"s pprint function maintains order
pprint(result.data, indent=2)
# {
#   "name": "Charlie",
#   "email": "[email protected]",
#   "created_at": "2014-10-30T08:27:48.515735+00:00",
#   "uppername": "CHARLIE"
# }
"Read-only" and "Write-only" Fields

在web API上下文中,dump_onlyload_only參數(shù)分別類似于只讀和只寫的概念:

class UserSchema(Schema):
    name = fields.Str()
    # password is "write-only"
    password = fields.Str(load_only=True)
    # created_at is "read-only"
    created_at = fields.DateTime(dump_only=True)
更多教程

marshmallow之schema嵌套
marshmallow之自定義Field
marshmallow之Schema延伸功能

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/43841.html

相關(guān)文章

  • marshmallow之自定義Field

    摘要:有三種方式創(chuàng)建自定義的。下面的例子判斷某個對象是否是某個對象的作者,以及的屬性是否出現(xiàn)單詞自定義錯誤信息字段驗(yàn)證產(chǎn)生的錯誤信息可以在類級別或?qū)嵗墑e配置。在類級別時,可以定義為錯誤碼和錯誤信息的字典映射在類實(shí)例化時,給參數(shù)傳參對象 有三種方式創(chuàng)建自定義的field。 創(chuàng)建Field類的子類 創(chuàng)建繼承自marshmallow.fields.Field類的子類并實(shí)現(xiàn)_serialize和/...

    AWang 評論0 收藏0
  • marshmallow之Schema延伸功能

    摘要:創(chuàng)建實(shí)例時如果傳遞了,表示需要接收輸入數(shù)據(jù)集合,裝飾器注冊預(yù)處理和后處理方法時需要傳遞參數(shù)。 預(yù)處理和后處理方法 數(shù)據(jù)的預(yù)處理和后處理方法通過pre_load, post_load, pre_dump和post_dump裝飾器注冊: from marshmallow import Schema, fields, pre_load class UserSchema(Schema): ...

    hzx 評論0 收藏0
  • marshmallow之schema嵌套

    摘要:嵌套可以嵌套使用以表示對象間的關(guān)系如外鍵關(guān)系。在下面的例子中,和對象是一對多的關(guān)系必須使用或參數(shù)避免無限遞歸也可以使用導(dǎo)入模塊的方式傳遞嵌套,如自嵌套給傳遞字符串參數(shù)表示和對象本身的關(guān)系 schema嵌套 schema可以嵌套使用以表示對象間的關(guān)系(如外鍵關(guān)系)。 例如下例中Blog有一個用User對象表示的author屬性: import datetime as dt class ...

    miracledan 評論0 收藏0
  • SegmentFault 技術(shù)周刊 Vol.4 - 這份 Android 有點(diǎn)甜

    摘要:閱讀本期周刊,你將快速入門,開啟甜蜜之旅。然則的原理負(fù)責(zé)發(fā)送以及處理消息,創(chuàng)建消息隊(duì)列并不斷從隊(duì)列中取出消息交給,則用于保存消息。 showImg(/img/bVCN99?w=900&h=385); 2016 年 8 月,Android 7.0 Nougat(牛軋?zhí)牵┱桨l(fā)布,那么問題來了,你 Marshmallow 了么(? -? ?) Cupcake、Donut、Gingerbre...

    jay_tian 評論0 收藏0

發(fā)表評論

0條評論

jhhfft

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<