摘要:代碼詳解完整代碼鏈接,文件內(nèi)。處理完畢后生成的文件保存了問(wèn)題文件保存了回答。將回答向量文件中的每一行默認(rèn)以空格為分隔符,構(gòu)成一個(gè)目標(biāo)序列。對(duì)文件中的每一行都進(jìn)行處理與添加后,將得到的返回。
Chapter1.代碼詳解
完整代碼github鏈接,Untitled.ipynb文件內(nèi)。
【里面的測(cè)試是還沒(méi)訓(xùn)練完的時(shí)候測(cè)試的,今晚會(huì)更新訓(xùn)練完成后的測(cè)試結(jié)果】
修復(fù)了網(wǎng)上一些代碼的bug,解決了由于tensorflow版本不同引起的一些問(wèn)題。
數(shù)據(jù)集鏈接 ,下載數(shù)據(jù)集后,解壓提取dgk_shooter_min.conv文件,最好進(jìn)行轉(zhuǎn)碼操作。建議用記事本打開(kāi)后將其另存為,選擇編碼為utf-8后進(jìn)行保存。
#coding=utf-8 #(1)數(shù)據(jù)預(yù)處理 import os import random from io import open conv_path = "dgk_shooter_min.conv.txt" #判斷數(shù)據(jù)集是否存在? if not os.path.exists(conv_path): print("數(shù)據(jù)集不存在") exit() # 數(shù)據(jù)集格式 """ E M 畹/華/吾/侄/ M 你/接/到/這/封/信/的/時(shí)/候/ M 不/知/道/大/伯/還/在/不/在/人/世/了/ E M 咱/們/梅/家/從/你/爺/爺/起/ M 就/一/直/小/心/翼/翼/地/唱/戲/ M 侍/奉/宮/廷/侍/奉/百/姓/ M 從/來(lái)/不/曾/遭/此/大/禍/ M 太/后/的/萬(wàn)/壽/節(jié)/誰(shuí)/敢/不/穿/紅/ M 就/你/膽/兒/大/ M 唉/這/我/舅/母/出/殯/ M 我/不/敢/穿/紅/啊/ M 唉/呦/唉/呦/爺/ M 您/打/得/好/我/該/打/ M 就/因/為/沒(méi)/穿/紅/讓/人/賞/咱/一/紙/枷/鎖/ M 爺/您/別/給/我/戴/這/紙/枷/鎖/呀/ E M 您/多/打/我/幾/下/不/就/得/了/嗎/ M 走/ M 這/是/哪/一/出/啊/…/ / /這/是/ M 撕/破/一/點(diǎn)/就/弄/死/你/ M 唉/ M 記/著/唱/戲/的/再/紅/ M 還/是/讓/人/瞧/不/起/ M 大/伯/不/想/讓/你/挨/了/打/ M 還/得/跟/人/家/說(shuō)/打/得/好/ M 大/伯/不/想/讓/你/再/戴/上/那/紙/枷/鎖/ M 畹/華/開(kāi)/開(kāi)/門(mén)/哪/ E ... """ # 我首先使用文本編輯器sublime把dgk_shooter_min.conv文件編碼轉(zhuǎn)為UTF-8,一下子省了不少麻煩 convs = [] # 對(duì)話集合 with open(conv_path, encoding="utf8") as f: one_conv = [] # 一次完整對(duì)話 for line in f: line = line.strip(" ").replace("/", "")#將分隔符去掉 if line == "": continue if line[0] == "E": if one_conv: convs.append(one_conv) one_conv = [] elif line[0] == "M": one_conv.append(line.split(" ")[1]) #將對(duì)話轉(zhuǎn)成utf-8格式,并將其保存在dgk_shooter_min.conv文件中 print(convs[:3]) # 個(gè)人感覺(jué)對(duì)白數(shù)據(jù)集有點(diǎn)不給力啊 #[ ["畹華吾侄", "你接到這封信的時(shí)候", "不知道大伯還在不在人世了"], # ["咱們梅家從你爺爺起", "就一直小心翼翼地唱戲", "侍奉宮廷侍奉百姓", "從來(lái)不曾遭此大禍", "太后的萬(wàn)壽節(jié)誰(shuí)敢不穿紅", "就你膽兒大", "唉這我舅母出殯", "我不敢穿紅啊", "唉呦唉呦爺", "您打得好我該打", "就因?yàn)闆](méi)穿紅讓人賞咱一紙枷鎖", "爺您別給我戴這紙枷鎖呀"], # ["您多打我?guī)紫虏痪偷昧藛?, "走", "這是哪一出啊 ", "撕破一點(diǎn)就弄死你", "唉", "記著唱戲的再紅", "還是讓人瞧不起", "大伯不想讓你挨了打", "還得跟人家說(shuō)打得好", "大伯不想讓你再戴上那紙枷鎖", "畹華開(kāi)開(kāi)門(mén)哪"], ....] # 把對(duì)話分成問(wèn)與答 ask = [] # 問(wèn) response = [] # 答 for conv in convs: if len(conv) == 1: continue if len(conv) % 2 != 0: # 奇數(shù)對(duì)話數(shù), 轉(zhuǎn)為偶數(shù)對(duì)話 conv = conv[:-1] for i in range(len(conv)): if i % 2 == 0: ask.append(conv[i])#偶數(shù)對(duì),填寫(xiě)問(wèn)題 else: response.append(conv[i])#回答 print(len(ask), len(response)) print(ask[:3]) print(response[:3]) #["畹華吾侄", "咱們梅家從你爺爺起", "侍奉宮廷侍奉百姓"] #["你接到這封信的時(shí)候", "就一直小心翼翼地唱戲", "從來(lái)不曾遭此大禍"] def convert_seq2seq_files(questions, answers, TESTSET_SIZE=8000): # 創(chuàng)建文件 train_enc = open("train.enc", "w",encoding="utf-8") # 問(wèn) train_dec = open("train.dec", "w",encoding="utf-8") # 答 test_enc = open("test.enc", "w",encoding="utf-8") # 問(wèn) test_dec = open("test.dec", "w",encoding="utf-8") # 答 # 選擇8000數(shù)據(jù)作為測(cè)試數(shù)據(jù) test_index = random.sample([i for i in range(len(questions))], TESTSET_SIZE) for i in range(len(questions)): if i in test_index:#創(chuàng)建測(cè)試文件 test_enc.write(questions[i] + " ") test_dec.write(answers[i] + " ") else:#創(chuàng)建訓(xùn)練文件 train_enc.write(questions[i] + " ") train_dec.write(answers[i] + " ") if i % 1000 == 0:#表示處理了多少個(gè)i print(len(range(len(questions))), "處理進(jìn)度:", i) train_enc.close() train_dec.close() test_enc.close() test_dec.close() convert_seq2seq_files(ask, response) # 生成的*.enc文件保存了問(wèn)題 # 生成的*.dec文件保存了回答
將數(shù)據(jù)集進(jìn)行處理后分成問(wèn)與答的形式進(jìn)行保存,選擇其中的8000數(shù)據(jù)作為測(cè)試數(shù)據(jù)。處理完畢后生成的.enc文件保存了問(wèn)題,.dec文件保存了回答。
問(wèn)題文件*.enc預(yù)覽:
爺爺您戲改得真好 您怎么不進(jìn)去呀 王老板 見(jiàn)過(guò) 地球再也無(wú)法承受人類(lèi)的數(shù)量 我現(xiàn)在是和摩蘭達(dá)說(shuō)話嗎? 我們不是告訴他們應(yīng)該想什么
回答文件*.dec預(yù)覽:
這回跟您可真是一棵菜了 我等人拿鑰匙呢 唉 什么事 我們發(fā)現(xiàn)了一個(gè)新的太陽(yáng)系 不是 我們僅僅是想告訴他們應(yīng)該怎么想
#coding=utf-8 #(2)創(chuàng)建詞匯表 # 前一步生成的問(wèn)答文件路徑 train_encode_file = "train.enc" train_decode_file = "train.dec" test_encode_file = "test.enc" test_decode_file = "test.dec" print("開(kāi)始創(chuàng)建詞匯表...") # 特殊標(biāo)記,用來(lái)填充標(biāo)記對(duì)話 PAD = "__PAD__" GO = "__GO__" EOS = "__EOS__" # 對(duì)話結(jié)束 UNK = "__UNK__" # 標(biāo)記未出現(xiàn)在詞匯表中的字符 START_VOCABULART = [PAD, GO, EOS, UNK] PAD_ID = 0 GO_ID = 1 EOS_ID = 2 UNK_ID = 3 # 參看tensorflow.models.rnn.translate.data_utils vocabulary_size = 5000 # 生成詞匯表文件 def gen_vocabulary_file(input_file, output_file): vocabulary = {} with open(input_file, encoding="utf8") as f: counter = 0 for line in f: counter += 1 tokens = [word for word in line.strip()] for word in tokens: if word in vocabulary: vocabulary[word] += 1 else: vocabulary[word] = 1 vocabulary_list = START_VOCABULART + sorted(vocabulary, key=vocabulary.get, reverse=True) # 取前5000個(gè)常用漢字, 應(yīng)該差不多夠用了(額, 好多無(wú)用字符, 最好整理一下. 我就不整理了) if len(vocabulary_list) > 5000: vocabulary_list = vocabulary_list[:5000] print(input_file + " 詞匯表大小:", len(vocabulary_list)) with open(output_file, "w", encoding="utf8") as ff: for word in vocabulary_list: ff.write(word + " ") gen_vocabulary_file(train_encode_file, "train_encode_vocabulary") gen_vocabulary_file(train_decode_file, "train_decode_vocabulary") train_encode_vocabulary_file = "train_encode_vocabulary" train_decode_vocabulary_file = "train_decode_vocabulary" print("對(duì)話轉(zhuǎn)向量...") # 把對(duì)話字符串轉(zhuǎn)為向量形式 def convert_to_vector(input_file, vocabulary_file, output_file): tmp_vocab = [] with open(vocabulary_file, "r", encoding="utf8") as f: tmp_vocab.extend(f.readlines()) tmp_vocab = [line.strip() for line in tmp_vocab] vocab = dict([(x, y) for (y, x) in enumerate(tmp_vocab)]) # {"碩": 3142, "v": 577, "I": 4789, "ue796": 4515, "拖": 1333, "疤": 2201 ...} output_f = open(output_file, "w") with open(input_file, "r", encoding="utf8") as f: for line in f: line_vec = [] for words in line.strip(): line_vec.append(vocab.get(words, UNK_ID)) output_f.write(" ".join([str(num) for num in line_vec]) + " ") output_f.close() convert_to_vector(train_encode_file, train_encode_vocabulary_file, "train_encode.vec") convert_to_vector(train_decode_file, train_decode_vocabulary_file, "train_decode.vec") convert_to_vector(test_encode_file, train_encode_vocabulary_file, "test_encode.vec") convert_to_vector(test_decode_file, train_decode_vocabulary_file, "test_decode.vec")
提取前5000個(gè)常用的漢字創(chuàng)建詞匯表
詞匯表文件*_vocabulary預(yù)覽:
__PAD__ __GO__ __EOS__ __UNK__ 我 的 你 是 , 不 了 們
對(duì)話轉(zhuǎn)向量,把對(duì)話字符串轉(zhuǎn)為向量形式
向量文件*.vec預(yù)覽:
6 269 31 13 1022 157 5 60 190 28 14 226 92 113 2047 2047 98 909 724 137 22 9 644 1331 278 63 1685 28 6 1363 118 63 4 9 652 514 824 88 433 131 51 24 4 127 131 1093 433 94 81 4 884 13 840 3435 1010 366
生成的train_encode.vec和train_decode.vec用于訓(xùn)練,對(duì)應(yīng)的詞匯表train_encode_vocabulary和train_decode_vocabulary。
這里選取部分代碼進(jìn)行講解,完整代碼鏈接。
導(dǎo)入向量文件進(jìn)行訓(xùn)練,定義一個(gè)read_data的函數(shù)對(duì)訓(xùn)練集與測(cè)試集的問(wèn)題向量文件encode.vec,回答向量文件decode.vec,進(jìn)行讀取。
讀取的時(shí)候?qū)?wèn)題向量文件encode.vec中的每一行默認(rèn)以空格為分隔符,構(gòu)成一個(gè)源序列。將回答向量文件decode.vec中的每一行默認(rèn)以空格為分隔符,構(gòu)成一個(gè)目標(biāo)序列。然后將兩個(gè)序列添加到data_set中。對(duì)文件中的每一行都進(jìn)行處理與添加后,將得到的data_set返回。
# 讀取*encode.vec和*decode.vec數(shù)據(jù)(數(shù)據(jù)還不算太多, 一次讀入到內(nèi)存) def read_data(source_path, target_path, max_size=None): data_set = [[] for _ in buckets]#生成了[[],[],[],[]],即當(dāng)值與參數(shù)不一樣 with tf.gfile.GFile(source_path, mode="r") as source_file:#以讀格式打開(kāi)源文件(source_file) with tf.gfile.GFile(target_path, mode="r") as target_file:#以讀格式打開(kāi)目標(biāo)文件 source, target = source_file.readline(), target_file.readline()#只讀取一行 counter = 0#計(jì)數(shù)器為0 while source and target and ( not max_size or counter < max_size):#當(dāng)讀入的還存在時(shí) counter += 1 source_ids = [int(x) for x in source.split()]#source的目標(biāo)序列號(hào),默認(rèn)分隔符為空格,組成了一個(gè)源序列 target_ids = [int(x) for x in target.split()]#target組成一個(gè)目標(biāo)序列,為目標(biāo)序列 target_ids.append(EOS_ID)#加上結(jié)束標(biāo)記的序列號(hào) for bucket_id, (source_size, target_size) in enumerate(buckets):#enumerate()遍歷序列中的元素和其下標(biāo) if len(source_ids) < source_size and len(target_ids) < target_size:#判斷是否超越了最大長(zhǎng)度 data_set[bucket_id].append([source_ids, target_ids])#讀取到數(shù)據(jù)集文件中區(qū) break#一次即可,跳出當(dāng)前循環(huán) source, target = source_file.readline(), target_file.readline()#讀取了下一行 return data_set
構(gòu)建模型
model = seq2seq_model.Seq2SeqModel(source_vocab_size=vocabulary_encode_size, target_vocab_size=vocabulary_decode_size, buckets=buckets, size=layer_size, num_layers=num_layers, max_gradient_norm=5.0, batch_size=batch_size, learning_rate=0.5, learning_rate_decay_factor=0.97, forward_only=False)
開(kāi)始訓(xùn)練
with tf.Session(config=config) as sess: # 恢復(fù)前一次訓(xùn)練 ckpt = tf.train.get_checkpoint_state(".") if ckpt != None: print(ckpt.model_checkpoint_path) model.saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) train_set = read_data(train_encode_vec, train_decode_vec) test_set = read_data(test_encode_vec, test_decode_vec) train_bucket_sizes = [len(train_set[b]) for b in range(len(buckets))]#分別計(jì)算出訓(xùn)練集中的長(zhǎng)度【1,2,3,4】 train_total_size = float(sum(train_bucket_sizes))#訓(xùn)練實(shí)例總數(shù) train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size for i in range(len(train_bucket_sizes))]#計(jì)算了之前所有的數(shù)的首戰(zhàn)百分比 loss = 0.0#損失置位0 total_step = 0 previous_losses = [] # 一直訓(xùn)練,每過(guò)一段時(shí)間保存一次模型 while True: random_number_01 = np.random.random_sample()#每一次循環(huán)結(jié)果不一樣 #選出最小的大于隨機(jī)采樣的值的索引號(hào) bucket_id = min([i for i in range(len(train_buckets_scale)) if train_buckets_scale[i] > random_number_01]) encoder_inputs, decoder_inputs, target_weights = model.get_batch(train_set, bucket_id) #get_batch()函數(shù)首先獲取bucket的encoder_size與decoder_size _, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, False)#損失 loss += step_loss / 500 total_step += 1 print(total_step) if total_step % 500 == 0: print(model.global_step.eval(), model.learning_rate.eval(), loss) # 如果模型沒(méi)有得到提升,減小learning rate if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):#即損失比以前的大則降低學(xué)習(xí)率 sess.run(model.learning_rate_decay_op) previous_losses.append(loss) # 保存模型 checkpoint_path = "./chatbot_seq2seq.ckpt" model.saver.save(sess, checkpoint_path, global_step=model.global_step) #返回路徑checkpoint_file = "%s-%s" % (save_path, "{:08d}".format(global_step)) loss = 0.0#置當(dāng)前損失為0 # 使用測(cè)試數(shù)據(jù)評(píng)估模型 for bucket_id in range(len(buckets)): if len(test_set[bucket_id]) == 0: continue #獲取當(dāng)前bucket的encoder_inputs, decoder_inputs, target_weights encoder_inputs, decoder_inputs, target_weights = model.get_batch(test_set, bucket_id) #計(jì)算bucket_id的損失權(quán)重 _, eval_loss, _ = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) eval_ppx = math.exp(eval_loss) if eval_loss < 300 else float("inf") print(bucket_id, eval_ppx)#輸出的是bucket_id與eval_ppx
#coding=utf-8 #(4)使用訓(xùn)練好的模型 import tensorflow as tf # 0.12 # from tensorflow.models.rnn.translate import seq2seq_model from tensorflow.models.tutorials.rnn.chatbot import seq2seq_model#注意 seq2seq_model這個(gè)需要自己去下載,根據(jù)自己的路徑進(jìn)行導(dǎo)入 # 本人將seq2seq_model模塊下載后 復(fù)制到tensorflow/models/tutorials/rnn/chatbot/路徑下,所以才這樣進(jìn)行導(dǎo)入 import os import numpy as np PAD_ID = 0 GO_ID = 1 EOS_ID = 2 UNK_ID = 3 tf.reset_default_graph() #詞匯表路徑path train_encode_vocabulary = "train_encode_vocabulary" train_decode_vocabulary = "train_decode_vocabulary" #讀取詞匯表 def read_vocabulary(input_file): tmp_vocab = [] with open(input_file, "r",encoding="utf-8") as f: tmp_vocab.extend(f.readlines())#打開(kāi)的文件全部讀入input_file中 tmp_vocab = [line.strip() for line in tmp_vocab]#轉(zhuǎn)換成列表 vocab = dict([(x, y) for (y, x) in enumerate(tmp_vocab)]) return vocab, tmp_vocab#返回字典,列表 vocab_en, _, = read_vocabulary(train_encode_vocabulary)#得到詞匯字典 _, vocab_de, = read_vocabulary(train_decode_vocabulary)#得到詞匯列表 # 詞匯表大小5000 vocabulary_encode_size = 5000 vocabulary_decode_size = 5000 buckets = [(5, 10), (10, 15), (20, 25), (40, 50)] layer_size = 256 # 每層大小 num_layers = 3 # 層數(shù) batch_size = 1 model = seq2seq_model.Seq2SeqModel(source_vocab_size=vocabulary_encode_size, target_vocab_size=vocabulary_decode_size, buckets=buckets, size=layer_size, num_layers=num_layers, max_gradient_norm=5.0, batch_size=batch_size, learning_rate=0.5, learning_rate_decay_factor=0.99, forward_only=True) #模型說(shuō)明:源,目標(biāo)詞匯尺寸=vocabulary_encode(decode)_size;batch_size:訓(xùn)練期間使用的批次的大小;#forward_only:僅前向不傳遞誤差 model.batch_size = 1#batch_size=1 with tf.Session() as sess:#打開(kāi)作為一次會(huì)話 # 恢復(fù)前一次訓(xùn)練 ckpt = tf.train.get_checkpoint_state(".")#從檢查點(diǎn)文件中返回一個(gè)狀態(tài)(ckpt) #如果ckpt存在,輸出模型路徑 if ckpt != None: print(ckpt.model_checkpoint_path) model.saver.restore(sess, ckpt.model_checkpoint_path)#儲(chǔ)存模型參數(shù) else: print("沒(méi)找到模型") #測(cè)試該模型的能力 while True: input_string = input("me > ") # 退出 if input_string == "quit": exit() input_string_vec = []#輸入字符串向量化 for words in input_string.strip(): input_string_vec.append(vocab_en.get(words, UNK_ID))#get()函數(shù):如果words在詞表中,返回索引號(hào);否則,返回UNK_ID bucket_id = min([b for b in range(len(buckets)) if buckets[b][0] > len(input_string_vec)])#保留最小的大于輸入的bucket的id encoder_inputs, decoder_inputs, target_weights = model.get_batch({bucket_id: [(input_string_vec, [])]}, bucket_id) #get_batch(A,B):兩個(gè)參數(shù),A為大小為len(buckets)的元組,返回了指定bucket_id的encoder_inputs,decoder_inputs,target_weights _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) #得到其輸出 outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]#求得最大的預(yù)測(cè)范圍列表 if EOS_ID in outputs:#如果EOS_ID在輸出內(nèi)部,則輸出列表為[,,,,:End] outputs = outputs[:outputs.index(EOS_ID)] response = "".join([tf.compat.as_str(vocab_de[output]) for output in outputs])#轉(zhuǎn)為解碼詞匯分別添加到回復(fù)中 print("AI--PigPig > " + response)#輸出回復(fù)
以下為訓(xùn)練5500步后的測(cè)試結(jié)果:
【最終結(jié)果有待更新】
傲嬌屬性get
訓(xùn)練10000步后開(kāi)始變得可愛(ài)了 ^_^
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/43199.html
摘要:集成項(xiàng)目鏈接通過(guò)上一節(jié)的學(xué)習(xí)我們已經(jīng)可以訓(xùn)練得到一只傲嬌的聊天了。本章將介紹項(xiàng)目關(guān)于的集成問(wèn)題,在集成之后,我們的可以通過(guò)應(yīng)用與大家日?;チ?。由于只是一個(gè)小測(cè)試,所以不考慮性能方面的問(wèn)題,在下一章我們將重點(diǎn)處理效率難關(guān),集成。 集成Netty 項(xiàng)目github鏈接 通過(guò)上一節(jié)的學(xué)習(xí)我們已經(jīng)可以訓(xùn)練得到一只傲嬌的聊天AI_PigPig了。 showImg(https://segmentf...
摘要:集成項(xiàng)目鏈接通過(guò)上一節(jié)的學(xué)習(xí)我們已經(jīng)可以訓(xùn)練得到一只傲嬌的聊天了。本章將介紹項(xiàng)目關(guān)于的集成問(wèn)題,在集成之后,我們的可以通過(guò)應(yīng)用與大家日?;チ?。由于只是一個(gè)小測(cè)試,所以不考慮性能方面的問(wèn)題,在下一章我們將重點(diǎn)處理效率難關(guān),集成。 集成Netty 項(xiàng)目github鏈接 通過(guò)上一節(jié)的學(xué)習(xí)我們已經(jīng)可以訓(xùn)練得到一只傲嬌的聊天AI_PigPig了。 showImg(https://segmentf...
摘要:引入項(xiàng)目鏈接在集成之后,為了提高效率,我打算將消息存儲(chǔ)在緩存系統(tǒng)中,本節(jié)將介紹在項(xiàng)目中的引入,以及前端界面的開(kāi)發(fā)。引入后,完整代碼鏈接。 引入Redis 項(xiàng)目github鏈接 在集成Netty之后,為了提高效率,我打算將消息存儲(chǔ)在Redis緩存系統(tǒng)中,本節(jié)將介紹Redis在項(xiàng)目中的引入,以及前端界面的開(kāi)發(fā)。 引入Redis后,完整代碼鏈接。 想要直接得到訓(xùn)練了13000步的聊天機(jī)器人可...
摘要:代碼詳解完整代碼鏈接,文件內(nèi)。處理完畢后生成的文件保存了問(wèn)題文件保存了回答。將回答向量文件中的每一行默認(rèn)以空格為分隔符,構(gòu)成一個(gè)目標(biāo)序列。對(duì)文件中的每一行都進(jìn)行處理與添加后,將得到的返回。 Chapter1.代碼詳解 完整代碼github鏈接,Untitled.ipynb文件內(nèi)?!纠锩娴臏y(cè)試是還沒(méi)訓(xùn)練完的時(shí)候測(cè)試的,今晚會(huì)更新訓(xùn)練完成后的測(cè)試結(jié)果】修復(fù)了網(wǎng)上一些代碼的bug,解決了由于...
閱讀 1947·2021-11-24 09:39
閱讀 3320·2021-09-22 14:58
閱讀 1178·2019-08-30 15:54
閱讀 3331·2019-08-29 11:33
閱讀 1800·2019-08-26 13:54
閱讀 1609·2019-08-26 13:35
閱讀 2479·2019-08-23 18:14
閱讀 776·2019-08-23 17:04