小編寫這篇文章的主要目的,是給各位廣大的讀者,去介紹一些知識(shí),知識(shí)的內(nèi)容主要是繪制相關(guān)的方圖dispiot、密度圖以及相關(guān)的散點(diǎn)圖,具體內(nèi)容,下面給大家詳細(xì)解答。
一、直方圖distplot()
import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib import pandas as pd fig=plt.figure(figsize=(12,5)) ax1=plt.subplot(121) rs=np.random.RandomState(10)#設(shè)定隨機(jī)數(shù)種子 s=pd.Series(rs.randn(100)*100) sns.distplot(s,bins=10,hist=True,kde=True,rug=True,norm_hist=False,color='y',label='distplot',axlabel='x') plt.legend() ax1=plt.subplot(122) sns.distplot(s,rug=True, hist_kws={"histtype":"step","linewidth":1,"alpha":1,"color":"g"},#設(shè)置箱子的風(fēng)格、線寬、透明度、顏色,風(fēng)格包括:'bar','barstacked','step','stepfilled' kde_kws={"color":"r","linewidth":1,"label":"KDE",'linestyle':'--'},#設(shè)置密度曲線顏色,線寬,標(biāo)注、線形 rug_kws={'color':'r'})#設(shè)置數(shù)據(jù)頻率分布顏色 plt.show()
函數(shù)及參數(shù)介紹:
distplot(a,bins=None,hist=True,kde=True,rug=False,fit=None,hist_kws=None, kde_kws=None,rug_kws=None,fit_kws=None,color=None,vertical=False, norm_hist=False,axlabel=None,label=None,ax=None)
a數(shù)據(jù)源
bins箱數(shù)hist、kde、rug是否顯示箱數(shù)、密度曲線、數(shù)據(jù)分布,默認(rèn)顯示箱數(shù)和密度曲線不顯示數(shù)據(jù)分析
{hist,kde,rug}_kws通過字典形式設(shè)置箱數(shù)、密度曲線、數(shù)據(jù)分布的各個(gè)特征
norm_hist直方圖的高度是否顯示密度,默認(rèn)顯示計(jì)數(shù),如果kde設(shè)置為True高度也會(huì)顯示為密度
color顏色
vertical是否在y軸上顯示圖標(biāo),默認(rèn)為False即在x軸顯示,即豎直顯示
axlabel坐標(biāo)軸標(biāo)簽
label直方圖標(biāo)簽
二、密度圖
2.1單個(gè)樣本數(shù)據(jù)分布密度圖
綜上所述,關(guān)于這方面的內(nèi)容就為大家介紹到這里了,希望可以為各位讀者帶來幫助。
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/127710.html
摘要:當(dāng)數(shù)據(jù)發(fā)生變化時(shí),這種演變過程隨之發(fā)生。是一種統(tǒng)計(jì)報(bào)告圖,由一系列高度不等的縱向條紋或線段表示數(shù)據(jù)分布的情況。 showImg(https://segmentfault.com/img/bVbnkP1?w=751&h=558); python相關(guān) 基礎(chǔ)概念 數(shù)據(jù):離散的,客觀事實(shí)的數(shù)字表示 信息:處理后的數(shù)據(jù),為實(shí)際問題提供答案 - 為數(shù)據(jù)提供一種關(guān)系或一個(gè)關(guān)聯(lián)后,數(shù)據(jù)就成了信...
摘要:數(shù)據(jù)集分布可視化當(dāng)處理一個(gè)數(shù)據(jù)集的時(shí)候,我們經(jīng)常會(huì)想要先看看特征變量是如何分布的。直方圖在橫坐標(biāo)的數(shù)據(jù)值范圍內(nèi)均等分的形成一定數(shù)量的數(shù)據(jù)段,并在每個(gè)數(shù)據(jù)段內(nèi)用矩形條顯示軸觀察數(shù)量的方式,完成了對(duì)的數(shù)據(jù)分布的可視化展示。 作者:xiaoyu微信公眾號(hào):Python數(shù)據(jù)科學(xué)知乎:python數(shù)據(jù)分析師 Seaborn學(xué)習(xí)大綱 seaborn的學(xué)習(xí)內(nèi)容主要包含以下幾個(gè)部分: 風(fēng)格管理 ...
摘要:分類數(shù)據(jù)散點(diǎn)圖在分類數(shù)據(jù)的基礎(chǔ)上展示定量數(shù)據(jù)的最簡單函數(shù)就是。此外,小提琴內(nèi)還顯示了箱體四分位數(shù)和四分位距。該函數(shù)會(huì)用高度估計(jì)值對(duì)數(shù)據(jù)進(jìn)行描述,而不是顯示一個(gè)完整的條形,它只繪制點(diǎn)估計(jì)和置信區(qū)間。 作者:xiaoyu微信公眾號(hào):Python數(shù)據(jù)科學(xué)知乎:python數(shù)據(jù)分析師 Seaborn學(xué)習(xí)大綱 seaborn的學(xué)習(xí)內(nèi)容主要包含以下幾個(gè)部分: 風(fēng)格管理 繪圖風(fēng)格設(shè)置 顏色風(fēng)...
??蘇州程序大白一文從基礎(chǔ)手把手教你Python數(shù)據(jù)可視化大佬??《??記得收藏??》 目錄 ????開講啦?。。?!????蘇州程序大白?????博主介紹前言數(shù)據(jù)關(guān)系可視化散點(diǎn)圖 Scatter plots折線圖強(qiáng)調(diào)連續(xù)性 Emphasizing continuity with line plots同時(shí)顯示多了圖表 數(shù)據(jù)種類的可視化 Plotting with categorical da...
摘要:,繪制盒形圖,同樣指定對(duì)數(shù)據(jù)的分類。如果傳入則畫出的盒形圖是橫向的。繪制小提琴圖,表示是否將兩類數(shù)據(jù)分開繪制,如果為,則不分開繪制,默認(rèn)為。數(shù)據(jù)集數(shù)據(jù)集名。計(jì)算置信區(qū)間時(shí)使用的引導(dǎo)迭代次數(shù)整數(shù)。 seaborn是python中的一個(gè)非常強(qiáng)大的數(shù)據(jù)可視化庫,它集成了matplotlib,下圖為seaborn的官網(wǎng),如果遇到疑惑的地方可以到官網(wǎng)查看。http://seaborn.pydat...
閱讀 923·2023-01-14 11:38
閱讀 895·2023-01-14 11:04
閱讀 756·2023-01-14 10:48
閱讀 2055·2023-01-14 10:34
閱讀 961·2023-01-14 10:24
閱讀 840·2023-01-14 10:18
閱讀 510·2023-01-14 10:09
閱讀 588·2023-01-14 10:02