摘要:概述主要來存放鍵值對(duì)。之前使用數(shù)組鏈表的形式,之后進(jìn)行了改變,使用了數(shù)組鏈表或者紅黑樹的形式。如果為,則按照字段中保存的初始容量進(jìn)行分配。并且之前在中的元素應(yīng)呆在原處或者移動(dòng)到倍位置處。
概述
HashMap主要來存放鍵值對(duì)。JDK1.8之前使用數(shù)組+鏈表的形式,JDK1.8之后進(jìn)行了改變,使用了數(shù)組+鏈表或者紅黑樹的形式。
小概念普及 關(guān)系運(yùn)算簡(jiǎn)介0 0 | 0 1 | 1 1 | |
---|---|---|---|
與 & | 0 | 0 | 1 |
或 | 0 | 1 | 1 |
異或 ^ | 0 | 1 | 0 |
非~ ~1=0 ~0=1
成員變量/** * The default initial capacity - MUST be a power of two. * 默認(rèn)的初始容量,必須是2的次冪 */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. * 最大容量 */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. * 默認(rèn)的負(fù)載因子 */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. * 紅黑樹閾值,鏈表元素個(gè)數(shù)大于等于此值則轉(zhuǎn)化為紅黑樹 */ static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for untreeifying a (split) bin during a * resize operation. Should be less than TREEIFY_THRESHOLD, and at * most 6 to mesh with shrinkage detection under removal. * 普通鏈表閾值,紅黑樹元素個(gè)數(shù)小于等于此值則轉(zhuǎn)化為普通鏈表 */ static final int UNTREEIFY_THRESHOLD = 6; /** * The smallest table capacity for which bins may be treeified. * (Otherwise the table is resized if too many nodes in a bin.) * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts * between resizing and treeification thresholds. * 桶中結(jié)構(gòu)轉(zhuǎn)化為紅黑樹對(duì)應(yīng)的table的最小大小 */ static final int MIN_TREEIFY_CAPACITY = 64; /** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) * 存儲(chǔ)數(shù)據(jù)的桶數(shù)組,數(shù)組大小總是2的次冪。 */ transient Node構(gòu)造方法[] table; /** * Holds cached entrySet(). Note that AbstractMap fields are used * for keySet() and values(). * 存放具體元素的set */ transient Set > entrySet; /** * The number of key-value mappings contained in this map. * map中的key-value個(gè)數(shù) */ transient int size; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). * HashMap的擴(kuò)容和修改次數(shù)計(jì)數(shù)器 用于判斷fail-fast */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * 下一次擴(kuò)容的閾值,元素個(gè)數(shù)到達(dá)此閾值即擴(kuò)容 * @serial */ // (The javadoc description is true upon serialization. // Additionally, if the table array has not been allocated, this // field holds the initial array capacity, or zero signifying // DEFAULT_INITIAL_CAPACITY.) // 此外,如果table還沒有被分配,則此值為初始容量或者0 int threshold; /** * The load factor for the hash table. * 負(fù)載因子 * @serial */ final float loadFactor;
/** * Constructs an empty HashMap with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { //判斷初始容量是否小于0,小于0則報(bào)錯(cuò) if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); //判斷初始容量是否大于最大容量,大于則置為最大容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; //判斷負(fù)載因子是否小于等于0 是否是一個(gè)數(shù)字 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); //為負(fù)載因子賦值 this.loadFactor = loadFactor; //為擴(kuò)容閾值賦值(tableSizeFor函數(shù)用于找到大于initialCapacity的最近的2的次冪) this.threshold = tableSizeFor(initialCapacity); } /** * Constructs an empty HashMap with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { //參數(shù)只有初始容量,使用默認(rèn)負(fù)載因子,并調(diào)用另一個(gè)構(gòu)造方法 this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty HashMap with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { //無參數(shù) 則只制定默認(rèn)負(fù)載因子 this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } /** * Constructs a new HashMap with the same mappings as the * specified Map. The HashMap is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified Map. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public HashMap(Map extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } /** * Returns a power of two size for the given target capacity. * 根據(jù)傳入的值返回一個(gè)2的次冪 */ static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
可以看出以上的所有的初始化過程都沒有對(duì)talbe進(jìn)行初始化。并且在傳入initialCapacity的構(gòu)造函數(shù)中對(duì)threshold進(jìn)行了初始化,所以threshold除了記錄擴(kuò)容閾值之外,還在HashMap初始化時(shí)記錄初始容量或直接置為0。
node的數(shù)據(jù)結(jié)構(gòu)/** * Basic hash bin node, used for most entries. (See below for * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) */ static class Nodehash計(jì)算方法implements Map.Entry { final int hash; final K key; V value; Node next; Node(int hash, K key, V value, Node next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { //key與value的hashCode進(jìn)行異或 return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry,?> e = (Map.Entry,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
/** * Computes key.hashCode() and spreads (XORs) higher bits of hash * to lower. Because the table uses power-of-two masking, sets of * hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys * holding consecutive whole numbers in small tables.) So we * apply a transform that spreads the impact of higher bits * downward. There is a tradeoff between speed, utility, and * quality of bit-spreading. Because many common sets of hashes * are already reasonably distributed (so don"t benefit from * spreading), and because we use trees to handle large sets of * collisions in bins, we just XOR some shifted bits in the * cheapest possible way to reduce systematic lossage, as well as * to incorporate impact of the highest bits that would otherwise * never be used in index calculations because of table bounds. */ static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }put 普通的put方法
可見普通的put方法僅僅是接收了key value參數(shù)并調(diào)用了putVal方法
/** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * 在map中創(chuàng)建key與value的對(duì)應(yīng)關(guān)系,如果map中之前已經(jīng)存在key的對(duì)應(yīng)關(guān)系,則之前的對(duì)應(yīng)關(guān)系會(huì)被替換。 * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }putAll方法
putAll是直接調(diào)用了putMapEntries方法
/** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * 從傳入的map中復(fù)制所有的對(duì)應(yīng)關(guān)系到當(dāng)前map,如果一個(gè)key值在傳入的map和當(dāng)前map中皆有對(duì)應(yīng)關(guān)系, 則可能會(huì)覆蓋當(dāng)前map中的對(duì)應(yīng)關(guān)系會(huì)被覆蓋。 * @param m mappings to be stored in this map * @throws NullPointerException if the specified map is null */ public void putAll(Map extends K, ? extends V> m) { putMapEntries(m, true); }
/** * Implements Map.putAll and Map constructor * 把傳入的map加入本HashMap,用于Map.putAll或者構(gòu)造map * @param m the map 傳入的map * @param evict false when initially constructing this map, else * true (relayed to method afterNodeInsertion). 如果是初始化構(gòu)造時(shí) 使用為false,其余時(shí)候?yàn)閠rue */ final void putMapEntries(Map extends K, ? extends V> m, boolean evict) { //獲取傳入map的大小 int s = m.size(); //如果傳入的map有元素則進(jìn)入 if (s > 0) { //如果本HashMap尚未初始化 if (table == null) { // pre-size // float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); if (t > threshold) threshold = tableSizeFor(t); } //如果本HashMap已經(jīng)初始化但是傳入map的大小大于了當(dāng)前的擴(kuò)容閾值則調(diào)整map的大小 //注意此處是用傳入的map大小與當(dāng)前map的threshold進(jìn)行比較 //理論上說應(yīng)該用當(dāng)前map的大小與傳入map的大小的和與threshold進(jìn)行比較 //在jdk1.7版本中有如下一段注釋來解釋這個(gè)行為 /* * Expand the map if the map if the number of mappings to be added * is greater than or equal to threshold. This is conservative; the * obvious condition is (m.size() + size) >= threshold, but this * condition could result in a map with twice the appropriate capacity, * if the keys to be added overlap with the keys already in this map. * By using the conservative calculation, we subject ourself * to at most one extra resize. */ /*當(dāng)待加入的映射關(guān)系個(gè)數(shù)大于threshold時(shí)對(duì)map進(jìn)行擴(kuò)容。這是一個(gè)保守的方法,很顯然判斷條件應(yīng)該是(m.size()+size)>=threshold,不過這個(gè)條件可能會(huì)讓map的容量比實(shí)際需要容量大一倍,因?yàn)樵趥魅氲膍ap中可能會(huì)有和當(dāng)前map重復(fù)的key(重復(fù)的key會(huì)被覆蓋,所以實(shí)際容量會(huì)比m.size()+size?。?所以使用保守的計(jì)算方法,最多進(jìn)行一次額外的擴(kuò)容。 */ else if (s > threshold) //調(diào)整map大小 resize(); //循環(huán)向添加當(dāng)前map添加原map中數(shù)據(jù) for (Map.Entry extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } }put方法的最終函數(shù)putVal
/** * Implements Map.put and related methods * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don"t change existing value 如果為true則不修改已經(jīng)存在的值 * @param evict if false, the table is in creation mode. 如果為false則進(jìn)入創(chuàng)建模式(初始化) * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Nodeget[] tab; Node p; int n, i; //如果table沒有初始化或者tab的長(zhǎng)度為0則初始化table if ((tab = table) == null || (n = tab.length) == 0) //初始化table并取得table的長(zhǎng)度 n = (tab = resize()).length; //取得tab中放入的位置的值為p,如果p為null則hash沒有沖突 直接放入 //n為2的次冪 n-1為一個(gè)全1項(xiàng) 與hash與可得到一個(gè)小于n的比較均勻的分布值 //例如n為32 hash為40則有如下運(yùn)算 //n :00000000000000000000000000100000 //n-1:00000000000000000000000000011111 //40 :00000000000000000000000000101000 //(n-1)&40:00000000000000000000000000001000 = 8 //故放入table[8]中 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); //如果放入的位置當(dāng)前有值則進(jìn)行鏈表或紅黑樹的插入 else { Node e; K k; //如果key與當(dāng)前p中key相同則找到了賦值的位置,的把p值直接賦值給e以供最后統(tǒng)一賦值 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //如果p為一個(gè)樹節(jié)點(diǎn) 則進(jìn)入樹節(jié)點(diǎn)處理流程 else if (p instanceof TreeNode) e = ((TreeNode )p).putTreeVal(this, tab, hash, key, value); //如果不為樹節(jié)點(diǎn) 則進(jìn)入鏈表處理流程 else { //循環(huán)遍歷鏈表 for (int binCount = 0; ; ++binCount) { //如果遍歷到了鏈表的末尾 if ((e = p.next) == null) { //新建節(jié)點(diǎn)并插入到表尾 p.next = newNode(hash, key, value, null); //如果鏈表長(zhǎng)度等于了樹化閾值則進(jìn)行樹化 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //判斷當(dāng)前節(jié)點(diǎn)的key是否與傳入的key相同,相同則直接結(jié)束循環(huán)(找到了賦值的位置) if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } //判斷e是否為null 即是否是找到了key相同的歷史映射 如果在面直接插入了新映射此處e應(yīng)為null if (e != null) { // existing mapping for key //取得舊值 V oldValue = e.value; //如果onlyIfAbsent為false即修改已經(jīng)存在的值 或者oldValue為null則重新賦值 if (!onlyIfAbsent || oldValue == null) e.value = value; //HashMap中無用 afterNodeAccess(e); return oldValue; } } //修改技術(shù)增加 ++modCount; //調(diào)整size的值并判斷是否大于了擴(kuò)容閾值 如果大于擴(kuò)容閾值則進(jìn)行擴(kuò)容 if (++size > threshold) resize(); //HashMap中無用 afterNodeInsertion(evict); return null; }
/** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *擴(kuò)容More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *
A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it"s also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { Node
e; return (e = getNode(hash(key), key)) == null ? null : e.value; } /** * Implements Map.get and related methods * * @param hash hash for key * @param key the key * @return the node, or null if none */ final Node getNode(int hash, Object key) { Node [] tab; Node first, e; int n; K k; //如果table被初始化并且長(zhǎng)度大于0且key中有值則進(jìn)入判斷否則返回null if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { //如果table中的值的key 與傳入的key相同則直接返回 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; //如果table中的值key與傳入的key不同則進(jìn)入后續(xù)的數(shù)據(jù)結(jié)構(gòu)進(jìn)行判斷 if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode )first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * 初始化table大小或者對(duì)table大小進(jìn)行翻倍。如果table為null,則按照threshold 字段中保存的初始容量進(jìn)行分配。如果table不為null,由于使用的是翻倍增加策略,則對(duì) table容量進(jìn)行翻倍。并且之前在table中的元素應(yīng)呆在原處或者移動(dòng)到2倍位置處。 * @return the table */ final Node[] resize() { //緩存當(dāng)前table為oldTab Node [] oldTab = table; //獲取oldTab的大小,為oldCap int oldCap = (oldTab == null) ? 0 : oldTab.length; //獲取當(dāng)前的擴(kuò)容閾值 int oldThr = threshold; //初始化新的table大小與閾值為0 int newCap, newThr = 0; //如果oldCap大于0,即當(dāng)前map中的table存有值 if (oldCap > 0) { //判斷oldCap是否大于等于最大容量 if (oldCap >= MAXIMUM_CAPACITY) { //如果oldCap大于等于了最大容量則把擴(kuò)容閾值賦為int的最大值 //給一個(gè)足夠大的值,以后盡量不再觸發(fā)擴(kuò)容 threshold = Integer.MAX_VALUE; //由于oldCap已經(jīng)是最大值,故不再擴(kuò)容 直接返回原table return oldTab; } //如果oldCap小于最大容量(即不滿足上一個(gè)判斷條件) //把oldCap的翻倍值賦給newCap并判斷newCap的容量是否小于最大容量(此處newCap可能大于最大容量) //如果newCap小于最大容量并且oldCap大于等于初始容量則把閾值翻倍 //todo 此處有個(gè)問題 為什么oldCap小于默認(rèn)初始容量不行 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) //此處因?yàn)槿萘糠艘槐?,閾值是容?負(fù)載因子 所以閾值翻一倍即可(為了減少計(jì)算進(jìn)行的性能優(yōu)化,不然其實(shí)可以放到下面進(jìn)行統(tǒng)一的閾值計(jì)算) newThr = oldThr << 1; // double threshold } //如果oldCap等于0,則證明table未初始化 //此時(shí)如果oldThr大于0 則證明threshold中存儲(chǔ)的是table的初始化長(zhǎng)度(詳情參見構(gòu)造方法部分,帶有initialCapacity的構(gòu)造方法會(huì)把initialCapacity賦給threshold進(jìn)行緩存) else if (oldThr > 0) // initial capacity was placed in threshold //把oldThr存的初始長(zhǎng)度賦給newCap newCap = oldThr; //如果oldCap為0并且oldThr為0 則當(dāng)前map使用不帶參數(shù)的構(gòu)造方法創(chuàng)建,且未進(jìn)行過put和get操作(因?yàn)槭褂眠^則table會(huì)被初始化) else { // zero initial threshold signifies using defaults //新容量為初始化容量 newCap = DEFAULT_INITIAL_CAPACITY; //新閾值為初始化容量*負(fù)載因子 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //如果新閾值為0 //表示在上面的第一個(gè)判斷中newCap大于了最大容量或者oldCap小于了DEFAULT_INITIAL_CAPACITY //即不滿足如下的條件:else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) //或者進(jìn)入了上面的第二個(gè)判斷( else if (oldThr > 0) ) if (newThr == 0) { //計(jì)算新的閾值 float ft = (float)newCap * loadFactor; //如果新容量小于最大容量并且計(jì)算的閾值小于最大容量則使用計(jì)算后的負(fù)載因子 //如果新容量大于等于了最大容量或者計(jì)算得到的閾值大于了最大容量則新閾值置為int的最大值(給一個(gè)足夠大的值,以后盡量不再觸發(fā)擴(kuò)容) newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } //更新當(dāng)前map的擴(kuò)容閾值 threshold = newThr; //以下是table擴(kuò)容并重新賦值的邏輯 @SuppressWarnings({"rawtypes","unchecked"}) //首先根據(jù)newCap創(chuàng)建新的table Node [] newTab = (Node [])new Node[newCap]; //把當(dāng)前map的table置為新創(chuàng)建的table table = newTab; //如果之前的table被初始化過(table可能存有值) if (oldTab != null) { //遍歷oldTab for (int j = 0; j < oldCap; ++j) { Node e; //把當(dāng)前位置的node賦給e,如果e不為null,表示當(dāng)前node中有值 if ((e = oldTab[j]) != null) { //把舊table中值置為null(防止內(nèi)存泄露) oldTab[j] = null; //如果e.next是null 表示當(dāng)前桶中只有一個(gè)值,把當(dāng)前值放入相應(yīng)位置即可 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //如果e為樹節(jié)點(diǎn)則進(jìn)入樹節(jié)點(diǎn)重分配相關(guān)函數(shù) else if (e instanceof TreeNode) ((TreeNode )e).split(this, newTab, j, oldCap); //進(jìn)入鏈表節(jié)點(diǎn)重分配邏輯 else { // preserve order //當(dāng)前節(jié)點(diǎn)的鏈表 Node loHead = null, loTail = null; //偏移后的鏈表 Node hiHead = null, hiTail = null; Node next; // do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/74613.html
摘要:當(dāng)鏈表長(zhǎng)度即將超過閥值,會(huì)把鏈表轉(zhuǎn)化為紅黑樹。然后再判斷是鏈表還是紅黑樹如果值相同,并且相同表示數(shù)組中第一個(gè)元素即為相同的將數(shù)組中第一個(gè)元素賦值給如果當(dāng)前元素類型為表示為紅黑樹,返回待存放的。 前提:學(xué)習(xí)HashMap的底層代碼之前,首先要對(duì)數(shù)據(jù)結(jié)構(gòu)要個(gè)大致的了解。其中重點(diǎn)了解數(shù)組,鏈表,樹的概念和用法。 一.圖示分析HashMap的結(jié)構(gòu) (1)圖示為JDK1.8之前的HashMap結(jié)...
摘要:之前,其內(nèi)部是由數(shù)組鏈表來實(shí)現(xiàn)的,而對(duì)于鏈表長(zhǎng)度超過的鏈表將轉(zhuǎn)儲(chǔ)為紅黑樹。非線程安全,即任一時(shí)刻可以有多個(gè)線程同時(shí)寫,可能會(huì)導(dǎo)致數(shù)據(jù)的不一致。有時(shí)兩個(gè)會(huì)定位到相同的位置,表示發(fā)生了碰撞。 原文地址 HashMap HashMap 是 Map 的一個(gè)實(shí)現(xiàn)類,它代表的是一種鍵值對(duì)的數(shù)據(jù)存儲(chǔ)形式。 大多數(shù)情況下可以直接定位到它的值,因而具有很快的訪問速度,但遍歷順序卻是不確定的。 HashM...
摘要:值得位數(shù)有的次方,如果直接拿散列值作為下標(biāo)訪問主數(shù)組的話,只要算法比較均勻,一般是很難出現(xiàn)碰撞的。但是內(nèi)存裝不下這么大的數(shù)組,所以計(jì)算數(shù)組下標(biāo)就采取了一種折中的辦法,就是將得到的散列值與數(shù)組長(zhǎng)度做一個(gè)與操作。 hashMap簡(jiǎn)單介紹 hashMap是面試中的高頻考點(diǎn),或許日常工作中我們只需把hashMap給new出來,調(diào)用put和get方法就完了。但是hashMap給我們提供了一個(gè)絕佳...
閱讀 3299·2021-11-23 09:51
閱讀 951·2021-09-03 10:30
閱讀 3224·2021-08-31 09:40
閱讀 3285·2019-08-30 14:22
閱讀 909·2019-08-30 14:09
閱讀 2910·2019-08-30 13:21
閱讀 3245·2019-08-28 18:03
閱讀 2865·2019-08-26 13:44