摘要:解題思路對數(shù)組進行排序,每次加入第個數(shù)后,就減去這個數(shù),并作為新的,進行遞歸。如果,則說明本次無解如果,則將本序列組合加入結(jié)果集中。題意其實就是從數(shù)組中選出個數(shù),使得等于。
Combination Sum
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7, A solution set is: [ [7], [2, 2, 3] ]
1.解題思路
對數(shù)組進行排序,每次加入第i個數(shù)后,target就減去這個數(shù),并作為新的target,進行遞歸。如果target<0,則說明本次無解;如果target=0,則將本序列組合加入結(jié)果集中。因為數(shù)字可以repeated,所以每次遞歸都從第i個開始。
2.代碼
public class Solution { List> res=new ArrayList
>(); public List
> combinationSum(int[] candidates, int target) { if(candidates.length==0) return res; Arrays.sort(candidates); combine(candidates,target,0,new ArrayList
()); return res; } private void combine(int[] candidates, int target, int index,List pre){ if(target<0) return; if(target==0){ res.add(pre); return; } for(int i=index;i cur=new ArrayList (pre); cur.add(candidates[i]); combine(candidates,target-candidates[i],i,cur); } } }
Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8, A solution set is: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
1.解題思路
本題與上一題的區(qū)別就是同一個數(shù)字在一個組合中只能出現(xiàn)一次,那么就需要考慮下面兩種情況:
1) 每次遞歸開始的index要加1;
2)在同一個for循環(huán)中,即針對同一個target,需要排除重復(fù)的數(shù)字。因為數(shù)組已經(jīng)事先進行排序,所以只要判斷下當前數(shù)字是否和前一個數(shù)字相等即可。
2.代碼
public class Solution { List> res=new ArrayList
>(); public List
> combinationSum2(int[] candidates, int target) { if(candidates.length==0) return res; Arrays.sort(candidates); combineHelper(candidates,0,target,new ArrayList
()); return res; } private void combineHelper(int[] candidates,int index,int target,List pre){ if(target<0) return; if(target==0){ res.add(pre); return; } for(int i=index;i index&&candidates[i]==candidates[i-1]) continue; List cur=new ArrayList (pre); cur.add(candidates[i]); combineHelper(candidates,i+1,target-candidates[i],cur); } } }
Combination Sum III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1: Input: k = 3, n = 7 Output: [[1,2,4]] Example 2: Input: k = 3, n = 9 Output: [[1,2,6], [1,3,5], [2,3,4]]
1.解題思路
其實本題與題I非常相似,只是加入了組合元素的個數(shù)限制k。題意其實就是從數(shù)組[1,2,...,9]中選出k個數(shù),使得sum等于target。唯獨一點與題I的區(qū)別就是這里每個數(shù)只能選一遍,所以每次遞歸都從i+1開始。
2.代碼
public class Solution { List> res =new ArrayList
>(); public List
> combinationSum3(int k, int n) { if(k==0||n==0) return res; int[] nums={1,2,3,4,5,6,7,8,9}; combine(nums,0,n,k,new ArrayList
()); return res; } private void combine(int[] nums,int index,int target,int k,List pre){ if(target<0) return; if(target==0&&k==0){ res.add(pre); return; } for(int i=index;i cur=new ArrayList (pre); cur.add(nums[i]); combine(nums,i+1,target-nums[i],k-1,cur); } } }
Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
1.解題思路
受前面三題的啟發(fā),很容易就想到繼續(xù)用遞歸進行回溯,但是發(fā)現(xiàn)Time Exceed Limit. 再仔細看題目,發(fā)現(xiàn)其實是動態(tài)規(guī)劃。給定一個數(shù)組,求和為target的組合個數(shù),那我們定義狀態(tài)dp[i]表示和為i的數(shù)字組合的個數(shù),那么狀態(tài)轉(zhuǎn)移就是dp[i]=dp[i-nums[0]]+dp[i-nums[1]]+...+dp[i-nums[n-1]];當然前提是i大于nums[]。
其實說到這,我們發(fā)現(xiàn)這其實和動態(tài)規(guī)劃的經(jīng)典題目CoinChange找零錢非常相似,但找零錢相對復(fù)雜一些,因為找零錢需要得到所有組合中擁有最少元素的組合的元素數(shù)量,即最少的紙幣數(shù)目;但這一題只需要求出所有的組合數(shù)即可。
CoinChange可參考 https://segmentfault.com/a/11...
2.代碼
public class Solution { public int combinationSum4(int[] nums, int target) { if(nums.length==0||target==0) return 0; int[] dp=new int[target+1]; dp[0]=1; for(int i=1;i<=target;i++){ for(int n:nums){ if(i>=n){ dp[i]+=dp[i-n]; } } } return dp[target]; } }
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/69798.html
摘要:前言從開始寫相關(guān)的博客到現(xiàn)在也蠻多篇了。而且當時也沒有按順序?qū)懍F(xiàn)在翻起來覺得蠻亂的??赡艽蠹铱粗卜浅2环奖?。所以在這里做個索引嘻嘻。順序整理更新更新更新更新更新更新更新更新更新更新更新更新更新更新更新更新 前言 從開始寫leetcode相關(guān)的博客到現(xiàn)在也蠻多篇了。而且當時也沒有按順序?qū)憽F(xiàn)在翻起來覺得蠻亂的??赡艽蠹铱粗卜浅2环奖恪K栽谶@里做個索引嘻嘻。 順序整理 1~50 1...
摘要:此時,若也正好減小為,說明當前集合是正解,加入數(shù)組。兩個無法得到正解的情況是在為,而不為時,當然已經(jīng)無法得到正解,。在不為而卻已經(jīng)小于等于的情況下,此時仍要加入其它數(shù)以令為,而要加入的數(shù)都是到的正整數(shù),所以已無法滿足令為的條件,。 Combination Sum I & II: link Combination Sum III Problem Find all possible com...
摘要:和唯一的不同是組合中不能存在重復(fù)的元素,因此,在遞歸時將初始位即可。 Combination Sum I Problem Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T...
摘要:參考思路和非常類似,只是這里需要增加進行重復(fù)處理的部分。題目要求題目中新添的要求包括數(shù)組中存在重復(fù)值,而且數(shù)組中每個值只可以使用一次。需要注意的是,既然數(shù)組中存在重復(fù)的值,就要注意可能會將重復(fù)的情況加入結(jié)果數(shù)組。 參考 思路和leetcode39 combination sum 非常類似,只是這里需要增加進行重復(fù)處理的部分。請參考我對leetcode39進行解答的這篇博客。 題目要求 ...
摘要:題目要求輸入和,找到所有個不同數(shù)字的組合,這些組合中數(shù)字的和為參考,解答這是一道典型的的題目,通過遞歸的方式記錄嘗試的節(jié)點,如果成功則加入結(jié)果集,如果失敗則返回上一個嘗試的節(jié)點進行下一種嘗試。 題目要求 Find all possible combinations of k numbers that add up to a number n, given that only numbe...
閱讀 2121·2021-11-23 10:06
閱讀 3482·2021-11-11 16:54
閱讀 3349·2019-08-29 17:31
閱讀 3573·2019-08-29 17:05
閱讀 2173·2019-08-26 13:36
閱讀 2165·2019-08-26 12:17
閱讀 530·2019-08-26 12:12
閱讀 1679·2019-08-26 10:19