成人国产在线小视频_日韩寡妇人妻调教在线播放_色成人www永久在线观看_2018国产精品久久_亚洲欧美高清在线30p_亚洲少妇综合一区_黄色在线播放国产_亚洲另类技巧小说校园_国产主播xx日韩_a级毛片在线免费

資訊專欄INFORMATION COLUMN

從 Spark Streaming 到 Apache Flink : 實時數(shù)據(jù)流在愛奇藝的演進

econi / 2807人閱讀

摘要:在移動端,愛奇藝月度總有效時長億小時,穩(wěn)居中國榜第三名。愛奇藝的峰值事件數(shù)達到萬秒,在正確性容錯性能延遲吞吐量擴展性等方面均遇到不小的挑戰(zhàn)。從到愛奇藝主要使用的是和來進行流式計算。

作者:陳越晨

整理:劉河

本文將為大家介紹Apache Flink在愛奇藝的生產(chǎn)與實踐過程。你可以借此了解到愛奇藝引入Apache Flink的背景與挑戰(zhàn),以及平臺構(gòu)建化流程。主要內(nèi)容如下:

    愛奇藝在實時計算方面的的演化和遇到的一些挑戰(zhàn)

    愛奇藝使用Flink的User Case

    愛奇藝Flink平臺化構(gòu)建流程

    愛奇藝在Flink上的改進

    未來工作

愛奇藝簡介

愛奇藝在2010年正式上線,于2018年3月份在納斯達克上市。我們擁有規(guī)模龐大且高度活躍的用戶基礎(chǔ),月活躍用戶數(shù)5.65億人,在在線視頻領(lǐng)域名列第一。在移動端,愛奇藝月度總有效時長59.08億小時,穩(wěn)居中國APP榜第三名。

一、愛奇藝在實時計算方面的演化和遇到的一些挑戰(zhàn) 1. 實時計算在愛奇藝的演化過程

實時計算是基于一些實時到達、速率不可控、到達次序獨立不保證順序、一經(jīng)處理無法重放除非特意保存的無序時間序列的數(shù)據(jù)的在線計算。

因此,在實時計算中,會遇到數(shù)據(jù)亂序、數(shù)據(jù)延時、事件時間與處理時間不一致等問題。愛奇藝的峰值事件數(shù)達到1100萬/秒,在正確性、容錯、性能、延遲、吞吐量、擴展性等方面均遇到不小的挑戰(zhàn)。

愛奇藝從2013年開始小規(guī)模使用storm,部署了3個獨立集群。在2015年,開始引入Spark Streaming,部署在YARN上。在2016年,將Spark Streaming平臺化,構(gòu)建流計算平臺,降低用戶使用成本,之后流計算開始在愛奇藝大規(guī)模使用。在2017年,因為Spark Streaming的先天缺陷,引入Flink,部署在獨立集群和YARN上。在2018年,構(gòu)建Streaming SQL與實時分析平臺,進一步降低用戶使用門檻。

2. 從Spark Streaming到Apache Flink

愛奇藝主要使用的是Spark Streaming和Flink來進行流式計算。Spark Streaming的實現(xiàn)非常簡單,通過微批次將實時數(shù)據(jù)拆成一個個批處理任務(wù),通過批處理的方式完成各個子Batch。Spark Streaming的API也非常簡單靈活,既可以用DStream的java/scala API,也可以使用SQL定義處理邏輯。但Spark Streaming受限于微批次處理模型,業(yè)務(wù)方需要完成一個真正意義上的實時計算會非常困難,比如基于數(shù)據(jù)事件時間、數(shù)據(jù)晚到后的處理,都得用戶進行大量編程實現(xiàn)。愛奇藝這邊大量使用Spark Streaming的場景往往都在于實時數(shù)據(jù)的采集落盤。

Apache Flink框架的實時計算模型是基于Dataflow Model實現(xiàn)的,完全支持Dataflow Model的四個問題:What,支持定義DAG圖;Where:定義各類窗口(固定窗口、滑動窗口和Session窗口);When:支持靈活定義計算觸發(fā)時間;How:支持豐富的Function定義數(shù)據(jù)更新模式。和Spark Streaming一樣,F(xiàn)link支持分層API,支持DataStream API,Process Function,SQL。Flink最大特點在于其實時計算的正確性保證:Exactly once,原生支持事件時間,支持延時數(shù)據(jù)處理。由于Flink本身基于原生數(shù)據(jù)流計算,可以達到毫秒級低延時。

在愛奇藝實測下來,相比Spark Streaming,Apache Flink在相近的吞吐量上,有更低的延時,更好的實時計算表述能力,原生實時事件時間、延時數(shù)據(jù)處理等。

二、在愛奇藝使用Flink的一些案例

下面通過三個Use Case來介紹一下,愛奇藝具體是怎么使用Flink的,包括海量數(shù)據(jù)實時ETL,實時風控,分布式調(diào)用鏈分析。

1. 海量數(shù)據(jù)實時ETL

在愛奇藝這邊所有用戶在端上的任何行為都會發(fā)一條日志到nginx服務(wù)器上,總量超過千萬QPS。對于具體某個業(yè)務(wù)來說,他們后續(xù)做實時分析,只希望訪問到業(yè)務(wù)自身的數(shù)據(jù),于是這中間就涉及一個數(shù)據(jù)拆分的工作。

在引入Flink之前,最早的數(shù)據(jù)拆分邏輯是這樣子的,在Ngnix機器上通過“tail -f /xxx/ngnix.log | grep "xxx"”的方式,配置了無數(shù)條這樣的規(guī)則,將這些不同的數(shù)據(jù)按照不同的規(guī)則,打到不同的業(yè)務(wù)kafka中。但這樣的規(guī)則隨著業(yè)務(wù)線的規(guī)模的擴大,這個tail進程越來越多,逐漸遇到了服務(wù)器性能瓶頸。

于是,我們就有了這樣一個設(shè)想,希望通過實時流計算將數(shù)據(jù)拆分到各個業(yè)務(wù)kafka。具體來說,就是Nginx上的全量數(shù)據(jù),全量采集到一級Kafka,通過實時ETL程序,按需將數(shù)據(jù)采集到各個業(yè)務(wù)Kafka中。當時,愛奇藝主的實時流計算基本均是基于Spark Streaming的,但考慮到Spark Streaming延遲相對來說比較高,愛奇藝從這個case展開開始推進Apache Flink的應(yīng)用。

海量數(shù)據(jù)實時ETL的具體實現(xiàn),主要有以下幾個步驟:

    解碼:各個端的投遞日志格式不統(tǒng)一,需要首先將各個端的日志按照各種解碼方式解析成規(guī)范化的格式,這邊選用的是JSON

    風控:實時拆分這邊的數(shù)據(jù)都會過一下風控的規(guī)則,過濾掉很大一部分刷量日志。由于量級太高,如果將每條日志都過一下風控規(guī)則,延時會非常大。這邊做了幾個優(yōu)化,首先,將用戶數(shù)據(jù)通過DeviceID拆分,不同的DeviceID拆分到不同的task manager上,每個task manager用本地內(nèi)存做一級緩存,將redis和flink部署在一起,用本地redis做二級緩存。最終的效果是,每秒redis訪問降到了平均4k,實時拆分的P99延時小于500ms。

    拆分:按照各個業(yè)務(wù)進行拆分

    采樣、再過濾:根據(jù)每個業(yè)務(wù)的拆分過程中根據(jù)用戶的需求不同,有采樣、再過濾等過程

2. 實時風控

防機器撞庫盜號攻擊是安全風控的一個常見需求,主要需求集中于事中和事后。在事中,進行超高頻異常檢測分析,過濾用戶異常行為;在事后,生成IP和設(shè)備ID的黑名單,供各業(yè)務(wù)實時分析時進行防刷使用。

以下是兩個使用Flink特性的案例:

    CEP:因為很多黑產(chǎn)用戶是有固定的一些套路,比如剛注冊的用戶可能在短時間內(nèi)會進行一兩項操作,我們通過CEP模式匹配,過濾掉那些有固定套路的黑產(chǎn)行為

    多窗口聚合:風控這邊會有一些需求,它需要在不同的一些時間窗口,有些時間窗口要求比較苛刻,可能是需要在一秒內(nèi)或亞秒內(nèi)去看一下某個用戶有多少次訪問,然后對他進行計數(shù),計數(shù)的結(jié)果超過某些閾值就判斷他是異常用戶。通過Flink低延時且支持多窗口的特點,進行超高頻的異常檢測,比如對同一個用戶在1秒內(nèi)的請求進行計數(shù),超過某個閾值的話就會被識別成黑產(chǎn)。

3. 分布式追蹤系統(tǒng)

分布式調(diào)用鏈追蹤系統(tǒng),即全鏈路監(jiān)控,每個公司基本都會有。在一個微服務(wù)架構(gòu)當中,服務(wù)間的調(diào)用關(guān)系錯綜復雜,往往很難排查問題,識別性能性能瓶頸,這時候就需要分布式調(diào)用鏈追蹤系統(tǒng)了。

上圖是一個調(diào)用鏈的追蹤拓撲圖,每個點是一個具體的一個應(yīng)用,就是具體經(jīng)過哪個應(yīng)用,每條邊是說明這個應(yīng)用到下一個應(yīng)用當中耗時了多久。

除了宏觀分析外,業(yè)務(wù)還想去看具體某一條日志的分析,具體某一次調(diào)用它是哪里慢了,哪里快了?所以,調(diào)用鏈還有另外一個需求,就是對于具體某次調(diào)用,想看一下它的具體耗時。

系統(tǒng)簡單架構(gòu)如上圖,上半部分偏重于埋點,下半部分偏于分析。埋點簡單來講,就是通過客戶端SDK埋點以及Agent采集,將系統(tǒng)調(diào)用日志全部打到Kafka中,我們通過Flink對他們進行各類分析。對于統(tǒng)計類的分析,就是通過Flink計算存儲到HBase當中,提供一些監(jiān)控報警、調(diào)用鏈拓普查詢等這種分析。針對這類需求,我們運用了Flink的多窗口聚合的特性,通過一分鐘或者多分鐘的窗口,從茫茫日志中尋找哪條是實際的調(diào)用鏈,構(gòu)建APP各個應(yīng)用的拓撲調(diào)用關(guān)系,第二級是基于第一級分析的一個結(jié)果,分析出那個拓普圖按各個窗口、各個不同的邊去算每條邊的平均耗時的統(tǒng)計。除此之外,我們還將通過Flink將原始數(shù)據(jù)打到ES里面供用戶直接去查詢。

三、Flink平臺化 1. 概覽

接下來將主要介紹愛奇藝的大數(shù)據(jù)平臺的構(gòu)建。上圖不限于Flink,是大數(shù)據(jù)平臺的整體架構(gòu)圖。在愛奇藝,存儲層基本是基于Hadoop生態(tài)的,比如像HDFS、HBase、Kudu等;計算層,使用YARN,支持MapReduce、Spark、Flink、Hive、Impala等這些引擎;數(shù)據(jù)開發(fā)層,主要是一些自研產(chǎn)品,批處理開發(fā)在愛奇藝有工作流開發(fā),數(shù)據(jù)集成等。實時計算開發(fā),有流計算開發(fā)、Streaming SQL、實時分析等平臺工具可以使用。

接下來,我們將簡單介紹愛奇藝實時計算與分析平臺。

2. 實時計算平臺

2.1 流任務(wù)平臺

流任務(wù)平臺是愛奇藝實時計算的底層平臺,支持流任務(wù)的提交運行與管理。流任務(wù)平臺支持YARN, Mesos, Flink獨立集群等多種資源調(diào)度框架;支持Storm, Spark Streaming, Flink, Streaming SQL等計算任務(wù)的托管與運行。在功能上,我們支持用戶直接打包程序上傳部署流任務(wù),也支持用戶通過Streaming SQL工具編寫SQL進行流計算開發(fā)。為了更好地對計算任務(wù)進行管理,流計算平臺提供JAR包、函數(shù)管理,任務(wù)指標監(jiān)控,以及資源審計功能。

2.2 Streaming SQL

無論對于Spark Streaming還是Flink來說,他們均有一個較好的SQL優(yōu)化引擎,但均缺乏DDL、DML創(chuàng)建的語義。于是對于業(yè)務(wù)來說,均需要業(yè)務(wù)先編程定義Source以及Sink,才可以使用SQL進行后續(xù)開發(fā)。

因此,愛奇藝自研的Streaming SQL定義了一套DDL和DML語法。其中,我們定義了4種表: 流表:定義了輸入源是什么?具體的解碼方式是什么?系統(tǒng)支持Json的解碼方式,也支持用戶自定義解碼函數(shù)。 維度表:主要是靜態(tài)表,支持MySQL,主要是用于流表Join的。 臨時表:和Hive的臨時表類似,用戶定義中間過程。 結(jié)果表:定義了具體輸出的類型,輸出的源是什么?怎么訪問?這邊的輸出源支持,就是常見的比如Kafka、MySQL、Kudu、ES、Druid、HBase等這樣一些分析型數(shù)據(jù)庫。

為了更好地支持業(yè)務(wù)需求,StreamingSQL默認也支持IP庫相關(guān)的預定義函數(shù),也支持用戶自定義函數(shù)。

上圖是一個StreamingSQL的應(yīng)用Case,將P99,P50耗時打印到Console中。

為了更好地支持業(yè)務(wù)使用Streaming SQL,StreamingSQL提供Web IDE,提供代碼高亮、關(guān)鍵詞提示、語法檢查、代碼調(diào)試等功能。

3. 實時分析平臺

實時分析平臺,是愛奇藝基于Druid構(gòu)建的分鐘級延時的實時分析平臺,支持通過Web向?qū)渲?,完成超大?guī)模實時數(shù)據(jù)多維度的分析,并生成分鐘級延時的可視化報表。支持的功能有,接入實時數(shù)據(jù)進行OLAP分析;制作實時報警;生產(chǎn)實時數(shù)據(jù)接口,配置監(jiān)控報警等。

產(chǎn)品優(yōu)勢:

全向?qū)渲茫簭膶崟r數(shù)據(jù)到報表生成僅需向?qū)渲眉纯?/p>

計算存儲透明:無需管理大數(shù)據(jù)處理任務(wù)與數(shù)據(jù)存儲

分鐘級低延時: 從數(shù)據(jù)產(chǎn)生到報表展示只有1分鐘延時

秒級查詢:亞秒級返回分析報表

支持靈活變更需求:業(yè)務(wù)可靈活更改維度,重新上線即可生效

3.1 用戶向?qū)渲?/h4>

實時分析平臺,將整個分析流程抽象成數(shù)據(jù)接入,數(shù)據(jù)處理,模型配置和報表配置4個過程。其中,模型配置完全按照OLAP模型,要求實時數(shù)據(jù)符合星型模型,存在時間戳、指標、維度等字段。

3.2 數(shù)據(jù)處理配置

在數(shù)據(jù)處理層,實時分析平臺提供向?qū)渲庙撁?,支持用戶通過純頁面的方式就可以配置數(shù)據(jù)處理過程,這主要應(yīng)對一些簡單場景,針對部分連SQL都不熟悉的小白用戶提供頁面配置方案;初次之外,類似StreamingSQL,實時分析也提供用戶自定義SQL方式定義數(shù)據(jù)處理過程。

四、Flink改進

在Flink平臺化的時候,我們遇到了幾個Flink的問題,分別對其進行了些改進。

1. 改進 - 優(yōu)雅恢復checkpoint

第一個改進是關(guān)于checkpoint的優(yōu)雅恢復。這個問題的出發(fā)點是,業(yè)務(wù)希望使用Spark Streaming可以通過代碼控制從哪個checkpoint恢復,但對于Flink來講,業(yè)務(wù)沒法通過代碼控制checkpoint恢復點,需要手動指定檢查點去恢復checkpoint。于是,我們希望Flink可以像Spark Streaming一樣,直接通過代碼方式恢復checkpoint。

針對這個問題,我們修改源碼,在Flink任務(wù)啟動時,從實際的路徑當中找到他最新的一個checkpoint,直接從那個checkpoint當中恢復,當然這個也是可以讓用戶選的,他如果還想用原生方式恢復也可以,但提供一個選項,它可以支持從最近的checkpoint恢復。

2. 改進 - Kafka Broker HA

第二個改進是關(guān)于Kafka Broker HA的一個問題,比如像Kafka Broker故障的時候,Kafka還可以正常工作,但Flink程序往往會掛掉。針對這個問題,我們處理了Flink在Kafka Broker退出之后的sockerTimeOutException,支持用戶重試次數(shù)配置來解決這個問題。

五、Flink未來工作

最后,介紹一下愛奇藝在Apache Flink的未來工作。目前StreamingSQL還只支持Spark Streaming和Structured Streaming引擎,后續(xù)很快會支持Flink引擎,大幅降低業(yè)務(wù)的Flink開發(fā)成本。隨著Flink任務(wù)規(guī)模不斷變大,我們將重點提升Flink在愛奇藝的成熟度,完善監(jiān)控報警,增加資源審計流程(目前還僅對Spark Streaming進行資源審計)。另外,我們要研究下Flink 1.6的一些新特性,嘗試下Kafka 2.0,調(diào)研Exactly once方案;另外,我們將對Flink新版本進行一些嘗試,推進批流統(tǒng)一。

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/6849.html

相關(guān)文章

  • TiDB 在愛藝的應(yīng)用及實踐

    摘要:愛奇藝,中國高品質(zhì)視頻娛樂服務(wù)提供者,年月日正式上線,推崇品質(zhì)青春時尚的品牌內(nèi)涵如今已深入人心,網(wǎng)羅了全球廣大的年輕用戶群體,積極推動產(chǎn)品技術(shù)內(nèi)容營銷等全方位創(chuàng)新。邊控中心是愛奇藝第一個在線業(yè)務(wù)使用的項目,所以我們制定了詳細的上線計劃。 愛奇藝,中國高品質(zhì)視頻娛樂服務(wù)提供者,2010 年 4 月 22 日正式上線,推崇品質(zhì)、青春、時尚的品牌內(nèi)涵如今已深入人心,網(wǎng)羅了全球廣大的年輕用戶群...

    jsbintask 評論0 收藏0

發(fā)表評論

0條評論

econi

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<