摘要:題目解答題目解答先考慮最底層的兩種情況,當(dāng)和當(dāng)?shù)臅r(shí)候,就是最中間的數(shù)為空還是存在唯一的一個(gè)數(shù)。然后我們?cè)谶@個(gè)基礎(chǔ)上,用循環(huán)兩個(gè)數(shù)兩個(gè)數(shù)地一起向外擴(kuò)張。擴(kuò)張后的結(jié)果存在里,作為再服務(wù)于上一層的擴(kuò)張,得到最終結(jié)果。
246.Strobogrammatic NumberI
題目:
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Write a function to determine if a number is strobogrammatic. The number is represented as a string.
For example, the numbers "69", "88", and "818" are all strobogrammatic.
解答:
public class Solution { //1, 6, 8, 9, 0 public boolean isStrobogrammatic(String num) { Mapmap = new HashMap<>(); map.put(1, 1); map.put(6, 9); map.put(8, 8); map.put(9, 6); map.put(0, 0); int len = num.length(); for (int i = 0; i < len; i++) { int c1 = num.charAt(i) - "0", c2 = num.charAt(len - 1 - i) - "0"; if (!map.containsKey(c1) || !map.containsKey(c2) || c1 != map.get(c2)) { return false; } } return true; } }
247.StroboGrammatic NumberII
題目:
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Find all strobogrammatic numbers that are of length = n.
For example,
Given n = 2, return ["11","69","88","96"].
解答:
先考慮最底層的兩種情況,當(dāng)n == 0和當(dāng)n == 1的時(shí)候,就是最中間的數(shù)為空還是存在唯一的一個(gè)數(shù)。然后我們?cè)谶@個(gè)基礎(chǔ)上,用循環(huán)兩個(gè)數(shù)兩個(gè)數(shù)地一起向外擴(kuò)張。擴(kuò)張后的結(jié)果存在result里,作為base再服務(wù)于上一層的擴(kuò)張,得到最終結(jié)果。
public class Solution { public Listhelper(int n, int m) { if (n == 0) return new ArrayList (Arrays.asList("")); if (n == 1) return new ArrayList (Arrays.asList("0", "1", "8")); List list = helper(n - 2, m); List result = new ArrayList (); for (int i = 0; i < list.size(); i++) { String s = list.get(i); if (n != m) result.add("0" + s + "0"); result.add("1" + s + "1"); result.add("8" + s + "8"); result.add("6" + s + "9"); result.add("9" + s + "6"); } return result; } public List findStrobogrammatic(int n) { return helper(n, n); } }
248.Strobogrammatic NumberIII
題目:
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Write a function to count the total strobogrammatic numbers that exist in the range of low <= num <= high.
For example,
Given low = "50", high = "100", return 3. Because 69, 88, and 96 are three strobogrammatic numbers.
Note:
Because the range might be a large number, the low and high numbers are represented as string.
解答:
有了上一題作基礎(chǔ),這里我們可以先求出所有長度滿足的數(shù),再通過與low,high的compare比較,選出最終的結(jié)果并count。
public class Solution { public Listhelper(int n, int max) { if (n == 0) return new ArrayList (Arrays.asList("")); if (n == 1) return new ArrayList (Arrays.asList("1", "8", "0")); List list = helper(n - 2, max); List result = new ArrayList (); for (int i = 0; i < list.size(); i++) { String s = list.get(i); if (n != max) result.add("0" + s + "0"); result.add("1" + s + "1"); result.add("8" + s + "8"); result.add("6" + s + "9"); result.add("9" + s + "6"); } return result; } public int strobogrammaticInRange(String low, String high) { int count = 0; List result = new ArrayList (); for (int i = low.length(); i <= high.length(); i++) { result.addAll(helper(i, i)); } for (String str : result) { if (str.length() == low.length() && str.compareTo(low) < 0 || str.length() == high.length() && str.compareTo(high) > 0) continue; count++; } return count; } }
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/66216.html
摘要:題目鏈接這題和都可以做,一種思路就是從中間開始往兩邊延伸,每次有種可能性和,其中開頭處不能是??梢约踊蛘哂脙?yōu)化。 247. Strobogrammatic Number II 題目鏈接:https://leetcode.com/problems... 這題recursion和iteration都可以做,一種思路就是從中間開始往兩邊延伸,每次c[i-k], c[i+k]有5種可能性: (...
Problem A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down). Find all strobogrammatic numbers that are of length = n. Example: Input: n = 2Output...
Problem A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down). Write a function to determine if a number is strobogrammatic. The number is represent...
Problem A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down). Write a function to count the total strobogrammatic numbers that exist in the range o...
閱讀 3489·2021-11-08 13:30
閱讀 3593·2019-08-30 15:55
閱讀 701·2019-08-29 15:16
閱讀 1759·2019-08-26 13:57
閱讀 2109·2019-08-26 12:18
閱讀 806·2019-08-26 11:36
閱讀 1746·2019-08-26 11:30
閱讀 3052·2019-08-23 16:46