成人国产在线小视频_日韩寡妇人妻调教在线播放_色成人www永久在线观看_2018国产精品久久_亚洲欧美高清在线30p_亚洲少妇综合一区_黄色在线播放国产_亚洲另类技巧小说校园_国产主播xx日韩_a级毛片在线免费

資訊專欄INFORMATION COLUMN

[LintCode/LeetCode] Perfect Squares

sydMobile / 3244人閱讀

摘要:動(dòng)態(tài)規(guī)劃法建立空數(shù)組從到每個(gè)數(shù)包含最少平方數(shù)情況,先所有值為將到范圍內(nèi)所有平方數(shù)的值賦兩次循環(huán)更新,當(dāng)它本身為平方數(shù)時(shí),簡(jiǎn)化動(dòng)態(tài)規(guī)劃法四平方和定理法

Problem

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

Example

Given n = 12, return 3 because 12 = 4 + 4 + 4
Given n = 13, return 2 because 13 = 4 + 9

Note

這道題在OJ有很多解法,公式法,遞歸法,動(dòng)規(guī)法,其中公式法時(shí)間復(fù)雜度最優(yōu)(four square theorem)。
不過我覺得考點(diǎn)還是在動(dòng)規(guī)吧,也更好理解。

Solution

1. 動(dòng)態(tài)規(guī)劃法

public class Solution {
    public int numSquares(int n) {
        //建立空數(shù)組dp:從0到n每個(gè)數(shù)包含最少平方數(shù)情況,先fill所有值為Integer.MAX_VALUE;
        int[] dp = new int[n+1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        //將0到n范圍內(nèi)所有平方數(shù)的dp值賦1;
        for (int i = 0; i*i <= n; i++) {
            dp[i*i] = 1;
        }
        //兩次循環(huán)更新dp[i+j*j],當(dāng)它本身為平方數(shù)時(shí),dp[i+j*j] < dp[i]+1
        for (int i = 0; i <= n; i++) {
            for (int j = 0; i+j*j <= n; j++) {
                dp[i+j*j] = Math.min(dp[i]+1, dp[i+j*j]);
            }
        }
        return dp[n];
    }
}

2. 簡(jiǎn)化動(dòng)態(tài)規(guī)劃法

public class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n+1];
        for (int i = 0; i <= n; i++) {
            dp[i] = i;
            for (int j = 0; j*j <= i; j++) {
                dp[i] = Math.min(dp[i], dp[i-j*j]+1);
            }
        }
        return dp[n];
    }
}

3. 四平方和定理法

public class Solution {
    public int numSquares (int n) {
        int m = n;
        while (m % 4 == 0)
            m = m >> 2;
        if (m % 8 == 7)
            return 4;
        int sqrtOfn = (int) Math.sqrt(n);
        if (sqrtOfn * sqrtOfn == n) //Is it a Perfect square?
            return 1;
        else {
                for (int i = 1; i <= sqrtOfn; ++i){
                    int remainder = n - i*i;
                    int sqrtOfNum = (int) Math.sqrt(remainder);
                    if (sqrtOfNum * sqrtOfNum == remainder)
                        return 2;
                }
            }
        return 3;
    }
}

文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/66197.html

相關(guān)文章

  • [LintCode/LeetCode] Maximal Square

    摘要:類似這種需要遍歷矩陣或數(shù)組來判斷,或者計(jì)算最優(yōu)解最短步數(shù),最大距離,的題目,都可以使用遞歸。 Problem Given a 2D binary matrix filled with 0s and 1s, find the largest square containing all 1s and return its area. Example For example, given t...

    Drinkey 評(píng)論0 收藏0
  • [Leetcode] Perfect Squares 完美平方數(shù)

    摘要:動(dòng)態(tài)規(guī)劃復(fù)雜度時(shí)間空間思路如果一個(gè)數(shù)可以表示為一個(gè)任意數(shù)加上一個(gè)平方數(shù),也就是,那么能組成這個(gè)數(shù)最少的平方數(shù)個(gè)數(shù),就是能組成最少的平方數(shù)個(gè)數(shù)加上因?yàn)橐呀?jīng)是平方數(shù)了。 Perfect Squares Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4...

    Moxmi 評(píng)論0 收藏0
  • [LeetCode] 279. Perfect Squares

    Problem Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n. Example 1: Input: n = 12Output: 3 Explanation: 12 = 4 + 4 + 4.Exampl...

    mist14 評(píng)論0 收藏0
  • leetcode279. Perfect Squares

    摘要:題目要求判斷一個(gè)數(shù)字最少由幾個(gè)平方數(shù)的和構(gòu)成。思路一暴力遞歸要想知道什么樣的組合最好,暴力比較所有的結(jié)果就好啦。當(dāng)然,效率奇差。代碼如下思路三數(shù)學(xué)統(tǒng)治一切這里涉及了一個(gè)叫做四平方定理的內(nèi)容。有興趣的可以去了解一下這個(gè)定理。 題目要求 Given a positive integer n, find the least number of perfect square numbers (...

    reclay 評(píng)論0 收藏0
  • [LintCode/LeetCode] Word Break

    Problem Given a string s and a dictionary of words dict, determine if s can be break into a space-separated sequence of one or more dictionary words. Example Given s = lintcode, dict = [lint, code]. R...

    dunizb 評(píng)論0 收藏0

發(fā)表評(píng)論

0條評(píng)論

最新活動(dòng)
閱讀需要支付1元查看
<