摘要:在程序某些必要的情況下,可以通過線程池的,,,來對線程做一些狀態(tài)判定。默認的工廠,只有,為秒,出現(xiàn)情況下,而且線程數(shù)超過了核心線程數(shù),會銷毀銷毀線程。線程池最小是,最大是,除非設置了和超時時間,這種情況線程數(shù)可能減少到,最大可能是。
五個狀態(tài)
// runState is stored in the high-order bits private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS;循環(huán)getTask方法
/** * Performs blocking or timed wait for a task, depending on * current configuration settings, or returns null if this worker * must exit because of any of: * 1. There are more than maximumPoolSize workers (due to * a call to setMaximumPoolSize). * 2. The pool is stopped. * 3. The pool is shutdown and the queue is empty. * 4. This worker timed out waiting for a task, and timed-out * workers are subject to termination (that is, * {@code allowCoreThreadTimeOut || workerCount > corePoolSize}) * both before and after the timed wait. * * @return task, or null if the worker must exit, in which case * workerCount is decremented */ private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } boolean timed; // Are workers subject to culling? for (;;) { int wc = workerCountOf(c); timed = allowCoreThreadTimeOut || wc > corePoolSize; //默認allowCoreThreadTimeOut為false,除非程序指定 //(1)當沒有超過核心線程時,默認allowCoreThreadTimeOut為false時 //timed值為false,始終break掉,不會銷毀線程 //(2)當超過核心線程數(shù),默認allowCoreThreadTimeOut為false時 //timed值為true,如果超過最大值,則銷毀;如果timeout過,則銷毀 // 如果allowCoreThreadTimeOut為true,則timed始終為true if (wc <= maximumPoolSize && ! (timedOut && timed)) break; if (compareAndDecrementWorkerCount(c)) return null; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }線程池狀態(tài)大于SHUTDOWN值的兩種情況 1、調用shutdown方法
當線程池調用了shutdown方法,線程池的狀態(tài)會首先被設置為SHUTDOWN,然后遍歷線程池中所有線程,調用一次interrupt方法,如果在休眠中的線程將會激活,激活后的線程以及調用shutdown方法本身的線程都會嘗試去調用tryTerminate方法,該方法將判定如果線程池中所有記錄的線程數(shù)為0,則將線程狀態(tài)改為TERMINATED,這個值為3,將大于SHUTDOWN狀態(tài)值。
2、調用shutdownNow方法當線程調用了shutdownNow方法后,首先將線程的狀態(tài)修改為STOP,這個狀態(tài)是大于SHUTDOWN值的,接下來它也會通過中斷激活線程,只是它來的更暴力一些,連加鎖和一些基本判斷都沒有,直接中斷;在調用tryTerminate之前會先清空阻塞隊列中所有的元素,這些元素被組裝為一個List列表作為shutdownNow方法的返回值。換句話說,沒有執(zhí)行的任務在shutdownNow執(zhí)行后的返回值中可以得到。在程序某些必要的情況下,可以通過線程池的isTerminating,isTerminated,isStopped,isShutdown來對線程做一些狀態(tài)判定。
KeepAliveTime參數(shù)workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS)
當阻塞隊列中沒有任務時,等待時間達到keepAliveTime毫秒值時就會被自動喚醒,而不會永遠地沉睡下去。
keepAliveTime,如果是通過newCachedThreadPool的話,默認是1分鐘超時,如果遇到前面所提到的瞬間沖擊,那么線程池數(shù)量將瞬間快速膨脹,而且這些瞬間膨脹的線程的生命周期最少在1分鐘以上。
如果設置了該參數(shù),那么當timeout的時候,就return null,就會跳出循環(huán),回收線程。
if (wc <= maximumPoolSize && ! (timedOut && timed)) break; if (compareAndDecrementWorkerCount(c)) return null;
allowCoreThreadTimeout : 默認情況下核心線程不會退出,可通過將該參數(shù)設置為true,讓核心線程也退出。
默認的Executors工廠,只有newCachedThreadPool,timeout為60秒,出現(xiàn)timeout情況下,而且線程數(shù)超過了核心線程數(shù),會銷毀銷毀線程。保持在corePoolSize數(shù)(如果是cached的,corePoolSize為0)。
/** * Timeout in nanoseconds for idle threads waiting for work. * Threads use this timeout when there are more than corePoolSize * present or if allowCoreThreadTimeOut. Otherwise they wait * forever for new work. */ private volatile long keepAliveTime; /** * If false (default), core threads stay alive even when idle. * If true, core threads use keepAliveTime to time out waiting * for work. */ private volatile boolean allowCoreThreadTimeOut;
線程池最小是corePoolSize,最大是maximumPoolSize,除非設置了allowCoreThreadTimeOut和超時時間,這種情況線程數(shù)可能減少到0,最大可能是Integer.MAX_VALUE。
Core pool size is the minimum number of workers to keep alive(and not allow to time out etc) unless allowCoreThreadTimeOut is set, in which case the minimum is zero.
/** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available. These pools will typically improve the performance * of programs that execute many short-lived asynchronous tasks. * Calls to execute will reuse previously constructed * threads if available. If no existing thread is available, a new * thread will be created and added to the pool. Threads that have * not been used for sixty seconds are terminated and removed from * the cache. Thus, a pool that remains idle for long enough will * not consume any resources. Note that pools with similar * properties but different details (for example, timeout parameters) * may be created using {@link ThreadPoolExecutor} constructors. * * @return the newly created thread pool */ public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue超時timeout設置為0的話,表示不等待()); } /** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available, and uses the provided * ThreadFactory to create new threads when needed. * @param threadFactory the factory to use when creating new threads * @return the newly created thread pool * @throws NullPointerException if threadFactory is null */ public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue (), threadFactory); }
public E poll(long timeout, TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); }
具體如下
public E pollFirst(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { E x; while ( (x = unlinkFirst()) == null) { if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } return x; } finally { lock.unlock(); } }
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉載請注明本文地址:http://systransis.cn/yun/65818.html
摘要:線程池根據(jù)當前在系統(tǒng)中運行的進程來優(yōu)化線程片。線程池可以用來解決處理一個特定請求最大線程數(shù)量限制問題。線程池中允許的線程最大數(shù)量,當活動線程達到這個數(shù)值后,后續(xù)的新任務會被阻塞。 每個 Android 應用進程在創(chuàng)建時,會同時創(chuàng)建一個線程,我們稱之為主線程,負責更新 UI 界面以及和處理用戶之間的交互,因此,在 Android 中,我們又稱之為 UI 線程。一個進程中 UI 線程只有一...
摘要:一個線程池包含很多準備運行的空閑線程,每當執(zhí)行完畢后,線程不會死亡而是回到線程池準備為下一個請求提供服務。另一個使用線程池的理由是減少并發(fā)線程數(shù)。創(chuàng)建大量線程會大大降低性能甚至拖垮虛擬機。 【Future的概念 interface Future ,表示異步計算的結果,F(xiàn)uture有個get方法而獲取結果只有在計算完成時獲取,否則會一直阻塞直到任務轉入完成狀態(tài),然后會返回結果或者拋出異常...
摘要:當活動線程核心線程非核心線程達到這個數(shù)值后,后續(xù)任務將會根據(jù)來進行拒絕策略處理。線程池工作原則當線程池中線程數(shù)量小于則創(chuàng)建線程,并處理請求。當線程池中的數(shù)量等于最大線程數(shù)時默默丟棄不能執(zhí)行的新加任務,不報任何異常。 spring-cache使用記錄 spring-cache的使用記錄,坑點記錄以及采用的解決方案 深入分析 java 線程池的實現(xiàn)原理 在這篇文章中,作者有條不紊的將 ja...
閱讀 3994·2021-09-22 16:03
閱讀 5345·2021-09-22 15:40
閱讀 1199·2021-09-06 15:02
閱讀 879·2019-08-30 15:53
閱讀 2232·2019-08-29 15:35
閱讀 1117·2019-08-23 18:22
閱讀 3346·2019-08-23 16:06
閱讀 652·2019-08-23 12:27