摘要:題目解答這是一個(gè)有向圖問題,所以先建圖,然后再掃。同時(shí)記錄一共存了多少課程在里,這些課都是可以上的課。如果當(dāng)兩個(gè)點(diǎn)在同時(shí)訪問的時(shí)候,那么構(gòu)成死循環(huán),返回。掃完所有的點(diǎn)都沒問題,才返回。這里總是忘記,當(dāng)中時(shí),才否則繼續(xù)循環(huán)
題目:
There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
解答:
這是一個(gè)有向圖問題,所以先建圖,然后再掃。
BFS:
每一層都是找出當(dāng)前不需要prerequisite的課程,即等級(jí)為0的課程,當(dāng)掃到這門課里,把其他需要這門課作為prerequisite的課降一個(gè)等級(jí),直到其等級(jí)為0時(shí),把它存到queue中作為其他課程可用的prerequisite課。同時(shí)記錄一共存了多少課程在queue里,這些課都是可以上的課。
public boolean canFinish(int numCourses, int[][] prerequisites) { if (numCourses <= 1) return true; if (prerequisites.length == 0 || prerequisites[0].length == 0) return true; ArrayList[] graph = new ArrayList[numCourses]; int[] degree = new int[numCourses]; for (int i = 0; i < numCourses; i++) { graph[i] = new ArrayList(); } for (int[] course : prerequisites) { degree[course[1]]++; graph[course[0]].add(course[1]); } //BFS Queueq = new LinkedList<>(); int courseRemaining = numCourses; for (int i = 0; i < numCourses; i++) { if (degree[i] == 0) { q.offer(i); courseRemaining--; } } //Search one and get rid of this one for the all while(!q.isEmpty()) { int key = q.poll(); for (int i = 0; i < graph[key].size(); i++) { int course = (int)graph[key].get(i); degree[course]--; if (degree[course] == 0) { q.offer(course); courseRemaining--; } } } return courseRemaining == 0; }
DFS:
這里把每個(gè)點(diǎn)分三種狀態(tài):0-沒訪問,1-正在訪問,2-訪問結(jié)束。每一個(gè)點(diǎn)都掃透了,確定這個(gè)點(diǎn)跟其他點(diǎn)不會(huì)構(gòu)成deadlock,那么把這個(gè)點(diǎn)跟其所有的子結(jié)都標(biāo)成2-訪問結(jié)束。如果當(dāng)兩個(gè)點(diǎn)在同時(shí)訪問的時(shí)候,那么構(gòu)成死循環(huán),返回false。掃完所有的點(diǎn)都沒問題,才返回true。
public boolean DFS(ArrayList[] graph, int course, int[] visited) { //set 0 as not visited, 1 as visiting, 2 as visited visited[course] = 1; for (int i = 0; i < graph[course].size(); i++) { int curtCourse = (int)graph[course].get(i); if (visited[curtCourse] == 1) { //if curtCourse is visiting as well, it"s a circle return false; } else if (visited[curtCourse] == 0) { //if curtCourse hasn"t visited yet, go and visit visited[curtCourse] = 1; //這里總是忘記,當(dāng)dfs中case return false時(shí),才return false, 否則繼續(xù)循環(huán) if(!DFS(graph, curtCourse, visited)) { return false; } } } visited[course] = 2; return true; } public boolean canFinish(int numCourses, int[][] prerequisites) { if (numCourses <= 1) return true; if (prerequisites.length == 0 || prerequisites[0].length == 0) return true; ArrayList[] graph = new ArrayList[numCourses]; for (int i = 0; i < numCourses; i++) { graph[i] = new ArrayList(); } for (int[] course : prerequisites) { graph[course[0]].add(course[1]); } //DFS int[] visited = new int[numCourses]; for (int i = 0; i < numCourses; i++) { if (visited[i] == 2) continue; if (!DFS(graph, i, visited)) { return false; } } return true; }
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/64924.html
Problem There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed ...
Course Schedule I There are a total of n courses you have to take, labeled from 0 to n - 1.Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is e...
摘要:建立入度組成,把原來輸入的無規(guī)律,轉(zhuǎn)換成另一種表示圖的方法。找到為零的點(diǎn),放到里,也就是我們圖的入口。對(duì)于它的也就是指向的。如果這些的入度也變成,也就變成了新的入口,加入到里,重復(fù)返回結(jié)果。這里題目有可能沒有預(yù)修課,可以直接上任意課程。 Some courses may have prerequisites, for example to take course 0 you have ...
Course Schedule Problem There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, whi...
Problem There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as...
閱讀 2058·2021-09-07 10:14
閱讀 1491·2019-08-30 15:53
閱讀 2278·2019-08-30 12:43
閱讀 2870·2019-08-29 16:37
閱讀 765·2019-08-26 13:29
閱讀 2009·2019-08-26 13:28
閱讀 450·2019-08-23 18:33
閱讀 3532·2019-08-23 16:09