摘要:系數(shù)反映每個特征的影響力。越大表示該特征在分類中起到的作用越大
import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as pltSplit train and test
from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(customer.ix[:,0:customer.columns.size-1], customer.ix[:,customer.columns.size-1], test_size = 0.2) x_train, x_test, y_train, y_test = train_test_split(order.ix[:,0:order.columns.size-1], order.ix[:,order.columns.size-1], test_size = 0.2)Pearson Correlation for Order
from scipy.stats import pearsonr prr = [] for i in range(order.columns.size-1): frame = pearsonr(order.iloc[:,i], order.iloc[:,order.columns.size-1]) prr.append(frame) result = pd.concat([pd.DataFrame(order.columns.values.tolist()), pd.DataFrame(prr)], axis=1) result.columns = ["Features", "Pearson", "Pvalue"] result result.to_csv("result.csv", index = True, header = True)Pearson Correlation for Customer
from scipy.stats import pearsonr prr = [] for i in range(customer.columns.size-1): frame = pearsonr(customer.iloc[:,i], customer.iloc[:,customer.columns.size-1]) prr.append(frame) result = pd.concat([pd.DataFrame(customer.columns.values.tolist()), pd.DataFrame(prr)], axis=1) result.columns = ["Features", "Pearson", "Pvalue"] result result.to_csv("result.csv", index = True, header = True)Random forest
from sklearn.ensemble import RandomForestRegressor clf = RandomForestRegressor() clf.fit(x_train, y_train) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_jobs=100) clf.fit(x_train, y_train)MIC
from minepy import MINE mic = [] for i in range(customer.columns.size-1): frame = m.compute_score(customer.iloc[:,i], customer.iloc[:,34]) prr.append(frame) result = pd.concat([pd.DataFrame(customer.columns.values.tolist()), pd.DataFrame(prr)], axis=1) result.columns = ["Features", "Pearson", "Pvalue"] result.to_csv("result.csv", index = True, header = True)Feature Correlation
corr = customer.corr() corr.to_csv("result.csv", index = True, header = True) tar_corr = lambda x: x.corr(x["tar"]) cus_call.apply(tar_corr) cus_call.corrwith(cus_call.tar)Feature Importance
系數(shù)反映每個特征的影響力。越大表示該特征在分類中起到的作用越大
importances = pd.DataFrame(sorted(zip(x_train.columns, map(lambda x: round(x, 4), clf.feature_importances_)), reverse=True)) importances.columns = ["Features", "Importance"] importances.to_csv("result.csv", index = True, header = True)
文章版權歸作者所有,未經(jīng)允許請勿轉載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉載請注明本文地址:http://systransis.cn/yun/44567.html
摘要:翻譯自昨天收到推送了一篇介紹隨機森林算法的郵件,感覺作為介紹和入門不錯,就順手把它翻譯一下。隨機森林引入的隨機森林算法將自動創(chuàng)建隨機決策樹群。回歸隨機森林也可以用于回歸問題。結語隨機森林相當起來非常容易。 翻譯自:http://blog.yhat.com/posts/python-random-forest.html 昨天收到y(tǒng)hat推送了一篇介紹隨機森林算法的郵件,感覺作為介紹和入門...
摘要:機器學習算法類型從廣義上講,有種類型的機器學習算法。強化學習的例子馬爾可夫決策過程常用機器學習算法列表以下是常用機器學習算法的列表。我提供了對各種機器學習算法的高級理解以及運行它們的代碼。決策樹是一種監(jiān)督學習算法,主要用于分類問題。 showImg(https://segmentfault.com/img/remote/1460000019086462); 介紹 谷歌的自動駕駛汽車和機...
閱讀 2541·2021-07-26 23:38
閱讀 3439·2019-08-30 13:10
閱讀 2325·2019-08-29 18:33
閱讀 2330·2019-08-29 16:12
閱讀 998·2019-08-29 10:59
閱讀 1805·2019-08-26 17:40
閱讀 777·2019-08-26 11:59
閱讀 819·2019-08-26 11:41