摘要:我們的目標(biāo)是構(gòu)建一個(gè)可以讀取手寫數(shù)字的應(yīng)用程序?yàn)榇耍覀冃枰恍┖透綆б粋€(gè)在文件夾中,它有個(gè)手寫數(shù)字每個(gè)數(shù)字個(gè)每個(gè)數(shù)字是圖像所以首先要將圖片切割成個(gè)不同圖片每個(gè)數(shù)字變成一個(gè)單行像素前面的個(gè)數(shù)字作為訓(xùn)練數(shù)據(jù),后個(gè)作為測(cè)試數(shù)據(jù)輸出進(jìn)一步
OCR of Hand-written Data using kNN
OCR of Hand-written Digits我們的目標(biāo)是構(gòu)建一個(gè)可以讀取手寫數(shù)字的應(yīng)用程序, 為此,我們需要一些train_data和test_data. OpenCV附帶一個(gè)images digits.png(在文件夾opencvsourcessamplesdata中),它有5000個(gè)手寫數(shù)字(每個(gè)數(shù)字500個(gè),每個(gè)數(shù)字是20x20圖像).所以首先要將圖片切割成5000個(gè)不同圖片,每個(gè)數(shù)字變成一個(gè)單行400像素.前面的250個(gè)數(shù)字作為訓(xùn)練數(shù)據(jù),后250個(gè)作為測(cè)試數(shù)據(jù).
import numpy as np import cv2 import matplotlib.pyplot as plt img = cv2.imread("digits.png") gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Now we split the image to 5000 cells, each 20x20 size cells = [np.hsplit(row,100) for row in np.vsplit(gray,50)] # Make it into a Numpy array. It size will be (50,100,20,20) x = np.array(cells) # Now we prepare train_data and test_data. train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400) test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400) # Create labels for train and test data k = np.arange(10) train_labels = np.repeat(k,250)[:,np.newaxis] test_labels = train_labels.copy() # Initiate kNN, train the data, then test it with test data for k=1 knn = cv2.ml.KNearest_create() knn.train(train, cv2.ml.ROW_SAMPLE, train_labels) ret,result,neighbours,dist = knn.findNearest(test,k=5) # Now we check the accuracy of classification # For that, compare the result with test_labels and check which are wrong matches = result==test_labels correct = np.count_nonzero(matches) accuracy = correct*100.0/result.size print( accuracy )
輸出:91.76
進(jìn)一步提高準(zhǔn)確率的方法是增加訓(xùn)練數(shù)據(jù),特別是錯(cuò)誤的數(shù)據(jù).每次訓(xùn)練時(shí)最好是保存訓(xùn)練數(shù)據(jù),以便下次使用.
# save the data np.savez("knn_data.npz",train=train, train_labels=train_labels) # Now load the data with np.load("knn_data.npz") as data: print( data.files ) train = data["train"] train_labels = data["train_labels"]OCR of English Alphabets
在opencv / samples / data /文件夾中附帶一個(gè)數(shù)據(jù)文件letter-recognition.data.在每一行中,第一列是一個(gè)字母表,它是我們的標(biāo)簽. 接下來的16個(gè)數(shù)字是它的不同特征.
import numpy as np import cv2 import matplotlib.pyplot as plt # Load the data, converters convert the letter to a number data= np.loadtxt("letter-recognition.data", dtype= "float32", delimiter = ",", converters= {0: lambda ch: ord(ch)-ord("A")}) # split the data to two, 10000 each for train and test train, test = np.vsplit(data,2) # split trainData and testData to features and responses responses, trainData = np.hsplit(train,[1]) labels, testData = np.hsplit(test,[1]) # Initiate the kNN, classify, measure accuracy. knn = cv2.ml.KNearest_create() knn.train(trainData, cv2.ml.ROW_SAMPLE, responses) ret, result, neighbours, dist = knn.findNearest(testData, k=5) correct = np.count_nonzero(result == labels) accuracy = correct*100.0/10000 print( accuracy )
輸出:93.06
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/42127.html
摘要:最后,與前一種情況一樣,我們首先將大數(shù)據(jù)集拆分為單個(gè)單元格,對(duì)于每個(gè)數(shù)字,保留個(gè)單元用于訓(xùn)練數(shù)據(jù),剩余的個(gè)數(shù)據(jù)保留用于測(cè)試。 OCR of Hand-written Data using SVM 在kNN中,我們直接使用像素強(qiáng)度作為特征向量。 這次我們將使用方向梯度直方圖(HOG)作為特征向量。在計(jì)算HOG之前,使用其二階矩來校正圖像: def deskew(img): m ...
寫這篇文章的主要目的,是關(guān)于Python Opencv的相關(guān)知識(shí),包括ann神經(jīng)網(wǎng)絡(luò)識(shí)別手寫數(shù)字功能,教給大家怎么去使用這種功能,接下來請(qǐng)大家仔細(xì)的進(jìn)行閱讀哦?! pencv會(huì)給大家提供一種神經(jīng)網(wǎng)絡(luò)的功能,即為ann,這種神經(jīng)的網(wǎng)絡(luò)功能與Keras的很接近?! £P(guān)于mnist數(shù)據(jù)怎么去進(jìn)行解析,讀者人員可以自己從網(wǎng)上downland軟件,用python自己編寫解析代碼,由于這里主要研究knn...
摘要:實(shí)現(xiàn)實(shí)時(shí)人臉識(shí)別本文記錄了在學(xué)習(xí)深度學(xué)習(xí)過程中,使用,開發(fā)環(huán)境為,實(shí)現(xiàn)局域網(wǎng)連接手機(jī)攝像頭,對(duì)目標(biāo)人員進(jìn)行實(shí)時(shí)人臉識(shí)別,效果并非特別好,會(huì)繼續(xù)改進(jìn)這里是項(xiàng)目地址項(xiàng)目中用到的大文件地址如果各位老爺看完覺得對(duì)你有幫助的話,請(qǐng)給個(gè)小星星,當(dāng)前時(shí)間 opencv+mtcnn+facenet+python+tensorflow 實(shí)現(xiàn)實(shí)時(shí)人臉識(shí)別 Abstract:本文記錄了在學(xué)習(xí)深度學(xué)習(xí)過程中,...
摘要:實(shí)現(xiàn)實(shí)時(shí)人臉識(shí)別更新新增測(cè)試方法直接使用特征進(jìn)行計(jì)算對(duì)比此次更新主要想法上一個(gè)版本是使用對(duì)準(zhǔn)備好的若干張照片進(jìn)行訓(xùn)練,首先準(zhǔn)確率不是很高還沒細(xì)究問題,猜測(cè)原因是自己準(zhǔn)備的圖片問題,以及實(shí)時(shí)采集實(shí)時(shí)的環(huán)境影響,但最主要的原因還是對(duì)每個(gè)目標(biāo)對(duì)象 opencv+mtcnn+facenet+python+tensorflow 實(shí)現(xiàn)實(shí)時(shí)人臉識(shí)別(2018.9.26更新) 新增測(cè)試方法直接使用em...
閱讀 2958·2021-11-24 09:39
閱讀 2869·2021-09-29 09:34
閱讀 3561·2021-09-24 10:23
閱讀 1746·2021-09-22 15:41
閱讀 1701·2019-08-30 15:55
閱讀 3516·2019-08-30 13:58
閱讀 2624·2019-08-30 13:11
閱讀 1669·2019-08-29 12:31