成人国产在线小视频_日韩寡妇人妻调教在线播放_色成人www永久在线观看_2018国产精品久久_亚洲欧美高清在线30p_亚洲少妇综合一区_黄色在线播放国产_亚洲另类技巧小说校园_国产主播xx日韩_a级毛片在线免费

資訊專欄INFORMATION COLUMN

Keras 對序列進(jìn)行一維和二維卷積

waterc / 2250人閱讀

摘要:網(wǎng)絡(luò)結(jié)構(gòu)來自固定隨機(jī)數(shù)種子以復(fù)現(xiàn)結(jié)果創(chuàng)建維向量,并擴(kuò)展維度適應(yīng)對輸入的要求,的大小為定義卷積層卷積核數(shù)量為卷積核大小為定義最大化池化層平鋪層,調(diào)整維度適應(yīng)全鏈接層定義全鏈接層編譯模型打印層的輸出打印網(wǎng)絡(luò)結(jié)構(gòu)最終輸出如下卷積結(jié)果網(wǎng)絡(luò)結(jié)

網(wǎng)絡(luò)結(jié)構(gòu)來自https://github.com/nfmcclure/...

Conv1D
import numpy as np
import keras

# 固定隨機(jī)數(shù)種子以復(fù)現(xiàn)結(jié)果
seed=13
np.random.seed(seed)

# 創(chuàng)建 1 維向量,并擴(kuò)展維度適應(yīng) Keras 對輸入的要求, data_1d 的大小為 (1, 25, 1)
data_1d = np.random.normal(size=25)
data_1d = np.expand_dims(data_1d, 0)
data_1d = np.expand_dims(data_1d, 2)

# 定義卷積層
filters = 1 # 卷積核數(shù)量為 1
kernel_size = 5 # 卷積核大小為 5
convolution_1d_layer = keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding="valid", input_shape=(25, 1), activation="relu", name="convolution_1d_layer")

# 定義最大化池化層
max_pooling_layer = keras.layers.MaxPool1D(pool_size=5, strides=1, padding="valid", name="max_pooling_layer")

# 平鋪層,調(diào)整維度適應(yīng)全鏈接層
reshape_layer = keras.layers.core.Flatten(name="reshape_layer")

# 定義全鏈接層
full_connect_layer = keras.layers.Dense(5, kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.1, seed=seed), bias_initializer="random_normal", use_bias=True, name="full_connect_layer")

# 編譯模型
model = keras.Sequential()
model.add(convolution_1d_layer)
model.add(max_pooling_layer)
model.add(reshape_layer)
model.add(full_connect_layer)

# 打印 full_connect_layer 層的輸出
output = keras.Model(inputs=model.input, outputs=model.get_layer("full_connect_layer").output).predict(data_1d)
print(output)

# 打印網(wǎng)絡(luò)結(jié)構(gòu)
print(model.summary())

最終輸出如下

======================卷積結(jié)果=========================
[[-0.0131043  -0.11734447  0.13395447 -0.75453871 -0.69782442]]
======================網(wǎng)絡(luò)結(jié)構(gòu)=========================
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
convolution_1d_layer (Conv1D (None, 21, 1)             6         
_________________________________________________________________
max_pooling_layer (MaxPoolin (None, 17, 1)             0         
_________________________________________________________________
reshape_layer (Flatten)      (None, 17)                0         
_________________________________________________________________
full_connect_layer (Dense)   (None, 5)                 90        
=================================================================
Total params: 96
Trainable params: 96
Non-trainable params: 0
_________________________________________________________________
None
Conv2D
data_size = [10, 10]
data_2d = np.random.normal(size=data_size)
data_2d = np.expand_dims(data_2d, 0)
data_2d = np.expand_dims(data_2d, 3)
print data_2d.shape

# 定義卷積層
conv_size = 2
conv_stride_size = 2
convolution_2d_layer = keras.layers.Conv2D(filters=1, kernel_size=(conv_size, conv_size), strides=(conv_stride_size, conv_stride_size), input_shape=(data_size[0], data_size[0], 1))
# convolution_2d_layer = keras.layers.Conv2D(filter=1, kernel_size=kernel, strides=[1,1], padding="valid", activation="relu", name="convolution_2d_layer", input_shape=(1, data_size[0], data_size[0]))


# 定義最大化池化層
pooling_size = (2, 2)
max_pooling_2d_layer = keras.layers.MaxPool2D(pool_size=pooling_size, strides=1, padding="valid", name="max_pooling_2d_layer")

# 平鋪層,調(diào)整維度適應(yīng)全鏈接層
reshape_layer = keras.layers.core.Flatten(name="reshape_layer")

# 定義全鏈接層
full_connect_layer = keras.layers.Dense(5, kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.1, seed=seed), bias_initializer="random_normal", use_bias=True, name="full_connect_layer")

model_2d = keras.Sequential()
model_2d.add(convolution_2d_layer)
model_2d.add(max_pooling_2d_layer)
model_2d.add(reshape_layer)
model_2d.add(full_connect_layer)

# 打印 full_connect_layer 層的輸出
output = keras.Model(inputs=model_2d.input, outputs=model_2d.get_layer("full_connect_layer").output).predict(data_2d)
print("======================卷積結(jié)果=========================")
print(output)

# 打印網(wǎng)絡(luò)結(jié)構(gòu)
print("======================網(wǎng)絡(luò)結(jié)構(gòu)=========================")
print(model_2d.summary())

輸出

======================卷積結(jié)果=========================
[[ 0.30173036 -0.10435719 -0.03354734  0.24000235 -0.09962128]]
======================網(wǎng)絡(luò)結(jié)構(gòu)=========================
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 5, 5, 1)           5         
_________________________________________________________________
max_pooling_2d_layer (MaxPoo (None, 4, 4, 1)           0         
_________________________________________________________________
reshape_layer (Flatten)      (None, 16)                0         
_________________________________________________________________
full_connect_layer (Dense)   (None, 5)                 85        
=================================================================
Total params: 90
Trainable params: 90
Non-trainable params: 0
_________________________________________________________________
None

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/41192.html

相關(guān)文章

  • 卷積神經(jīng)網(wǎng)絡(luò)(CNN)之一維卷積、二維卷積、三維卷積詳解

    摘要:一維卷積常用于序列模型,自然語言處理領(lǐng)域。三維卷積這里采用代數(shù)的方式對三維卷積進(jìn)行介紹,具體思想與一維卷積二維卷積相同。 由于計(jì)算機(jī)視覺的大紅大紫,二維卷積的用處范圍最廣。因此本文首先介紹二維卷積,之后再介紹一維卷積與三維卷積的具體流程,并描述其各自的具體應(yīng)用。1、二維卷積?? ? 圖中的輸入的數(shù)據(jù)維度為 14 × 14 ,過濾器大小為 5 × 5,二者做卷積,輸出的數(shù)據(jù)維度為 10 × 1...

    renweihub 評論0 收藏0
  • 如何使用Keras函數(shù)式API進(jìn)行深度學(xué)習(xí)?

    摘要:可以這樣說,庫使得創(chuàng)建深度學(xué)習(xí)模型變得快速且簡單。在本教程中,你將了解如何用中更具靈活性的函數(shù)式來定義深度學(xué)習(xí)模型。如何使用函數(shù)式定義簡單的多層感知器卷積神經(jīng)網(wǎng)絡(luò)以及循環(huán)神經(jīng)網(wǎng)絡(luò)模型。 可以這樣說,Keras Python庫使得創(chuàng)建深度學(xué)習(xí)模型變得快速且簡單。序列API使得你能夠?yàn)榇蠖鄶?shù)問題逐層創(chuàng)建模型。當(dāng)然它也是有局限性的,那就是它并不能讓你創(chuàng)建擁有共享層或具有多個(gè)輸入或輸出的模型。Ker...

    CocoaChina 評論0 收藏0
  • Keras TensorFlow教程:如何從零開發(fā)一個(gè)復(fù)雜深度學(xué)習(xí)模型

    摘要:目前,是成長最快的一種深度學(xué)習(xí)框架。這將是對社區(qū)發(fā)展的一個(gè)巨大的推動作用。以下代碼是如何開始導(dǎo)入和構(gòu)建序列模型?,F(xiàn)在,我們來構(gòu)建一個(gè)簡單的線性回歸模型。 作者:chen_h微信號 & QQ:862251340微信公眾號:coderpai簡書地址:https://www.jianshu.com/p/205... Keras 是提供一些高可用的 Python API ,能幫助你快速的構(gòu)建...

    cyqian 評論0 收藏0

發(fā)表評論

0條評論

閱讀需要支付1元查看
<