It"s a regression problem with one feature inputted.
I wrote this script for fun and for the preparation of oncoming Mathematical modeling contest(also simply in order to complete the task of a daily blog?( ?? ω ?? )y), didn"t took a lot of time(It means I can have time to sleep...).
It was accomplished all by myself, that means there is no reference to github"s code. Well, great progress!
I committed it onto my own GitHub, which was not well organized.
Import Packages
import numpy as np from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt print ("Import finished")
Because the importing of Keras took a little bit more time, I need a hint that they"ve been successfully imported:
Generating Data
Make them out of sequence in order to make random splitting,
Add some noise:
X = np.linspace(0, 2, 300) np.random.shuffle(X) Y = 3 * X + np.random.randn(*X.shape) * 0.33
Data visualization
plt.scatter(X,Y) plt.show() print (X[:10]," ",Y[:10])
Define Train and Test Data
X_train,Y_train = X[:260],Y[:260] X_test,Y_test = X[260:],Y[260:]
Establish LR Model
input and output dimensions are both set as 1
model = Sequential() model.add(Dense(units=1, kernel_initializer="uniform", activation="linear", input_dim=1)) weights = model.layers[0].get_weights() w_init = weights[0][0][0] b_init = weights[1][0] print("Linear regression model is initialized with weights w: %.2f, b: %.2f" % (w_init, b_init))
see the default coefficients:
Choose Loss-Function and Optimizer
Define loss as mean squared error, choose stochastic gradient descent as optimizer:
model.compile(loss="mse", optimizer="sgd")
Train Model
Run 500 epochs of iterations of sgd.
model.fit(X_train, Y_train, epochs=500, verbose=1)
The loss eventually stabilizes at around 0.0976:
Test Model
Y_pred = model.predict(X_test) plt.scatter(X_test,Y_test) plt.plot(X_test,Y_pred) plt.show() weights = model.layers[0].get_weights() w_init = weights[0][0][0] b_init = weights[1][0] print("Linear regression model is trained with weights w: %.2f, b: %.2f" % (w_init, b_init))
The final weights are 3.00 and 0.03, very close to the setted one(3.00, 0.33), the error of 0.03 might caused by the noise.
Use model
Input 1.66 as feature:
a = np.array([1.66]) Pre=model.predict(a) print (Pre)
Tomorrow I would change this script into multi-dimensional regression machine, which can solve multi-feature regression problems.
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/40760.html
摘要:目前,是成長(zhǎng)最快的一種深度學(xué)習(xí)框架。這將是對(duì)社區(qū)發(fā)展的一個(gè)巨大的推動(dòng)作用。以下代碼是如何開始導(dǎo)入和構(gòu)建序列模型。現(xiàn)在,我們來構(gòu)建一個(gè)簡(jiǎn)單的線性回歸模型。 作者:chen_h微信號(hào) & QQ:862251340微信公眾號(hào):coderpai簡(jiǎn)書地址:https://www.jianshu.com/p/205... Keras 是提供一些高可用的 Python API ,能幫助你快速的構(gòu)建...
摘要:機(jī)器學(xué)習(xí)深度學(xué)習(xí)與自然語(yǔ)言處理領(lǐng)域推薦的書籍列表人工智能深度學(xué)習(xí)與相關(guān)書籍課程示例列表是筆者系列的一部分對(duì)于其他的資料集錦模型開源工具與框架請(qǐng)參考。 showImg(https://segmentfault.com/img/remote/1460000014946199); DataScienceAI Book Links | 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)與自然語(yǔ)言處理領(lǐng)域推薦的書籍列表 sho...
閱讀 9057·2021-11-18 10:02
閱讀 2603·2019-08-30 15:43
閱讀 2664·2019-08-30 13:50
閱讀 1384·2019-08-30 11:20
閱讀 2712·2019-08-29 15:03
閱讀 3633·2019-08-29 12:36
閱讀 933·2019-08-23 17:04
閱讀 624·2019-08-23 14:18