摘要:本系列的其他文章已經(jīng)根據(jù)的官方教程基于數(shù)據(jù)集采用了和進(jìn)行建模。為了完整性,本文對數(shù)據(jù)應(yīng)用模型求解,具體使用的為。
前言
本文輸入數(shù)據(jù)是MNIST,全稱是Modified National Institute of Standards and Technology,是一組由這個(gè)機(jī)構(gòu)搜集的手寫數(shù)字掃描文件和每個(gè)文件對應(yīng)標(biāo)簽的數(shù)據(jù)集,經(jīng)過一定的修改使其適合機(jī)器學(xué)習(xí)算法讀取。這個(gè)數(shù)據(jù)集可以從牛的不行的Yann LeCun教授的網(wǎng)站獲取。
本系列的其他文章已經(jīng)根據(jù)TensorFlow的官方教程基于MNIST數(shù)據(jù)集采用了softmax regression和CNN進(jìn)行建模。為了完整性,本文對MNIST數(shù)據(jù)應(yīng)用RNN模型求解,具體使用的RNN為LSTM。
關(guān)于RNN/LSTM的理論知識,可以參考這篇文章
代碼# coding: utf-8 # @author: 陳水平 # @date:2017-02-14 # # In[1]: import tensorflow as tf import numpy as np # In[2]: sess = tf.InteractiveSession() # In[3]: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("mnist/", one_hot=True) # In[4]: learning_rate = 0.001 batch_size = 128 n_input = 28 n_steps = 28 n_hidden = 128 n_classes = 10 x = tf.placeholder(tf.float32, [None, n_steps, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) # In[5]: def RNN(x, weight, biases): # x shape: (batch_size, n_steps, n_input) # desired shape: list of n_steps with element shape (batch_size, n_input) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [-1, n_input]) x = tf.split(0, n_steps, x) outputs = list() lstm = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0) state = (tf.zeros([n_steps, n_hidden]),)*2 sess.run(state) with tf.variable_scope("myrnn2") as scope: for i in range(n_steps-1): if i > 0: scope.reuse_variables() output, state = lstm(x[i], state) outputs.append(output) final = tf.matmul(outputs[-1], weight) + biases return final # In[6]: def RNN(x, n_steps, n_input, n_hidden, n_classes): # Parameters: # Input gate: input, previous output, and bias ix = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) im = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) ib = tf.Variable(tf.zeros([1, n_hidden])) # Forget gate: input, previous output, and bias fx = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) fm = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) fb = tf.Variable(tf.zeros([1, n_hidden])) # Memory cell: input, state, and bias cx = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) cm = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) cb = tf.Variable(tf.zeros([1, n_hidden])) # Output gate: input, previous output, and bias ox = tf.Variable(tf.truncated_normal([n_input, n_hidden], -0.1, 0.1)) om = tf.Variable(tf.truncated_normal([n_hidden, n_hidden], -0.1, 0.1)) ob = tf.Variable(tf.zeros([1, n_hidden])) # Classifier weights and biases w = tf.Variable(tf.truncated_normal([n_hidden, n_classes])) b = tf.Variable(tf.zeros([n_classes])) # Definition of the cell computation def lstm_cell(i, o, state): input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib) forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb) update = tf.tanh(tf.matmul(i, cx) + tf.matmul(o, cm) + cb) state = forget_gate * state + input_gate * update output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob) return output_gate * tf.tanh(state), state # Unrolled LSTM loop outputs = list() state = tf.Variable(tf.zeros([batch_size, n_hidden])) output = tf.Variable(tf.zeros([batch_size, n_hidden])) # x shape: (batch_size, n_steps, n_input) # desired shape: list of n_steps with element shape (batch_size, n_input) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [-1, n_input]) x = tf.split(0, n_steps, x) for i in x: output, state = lstm_cell(i, output, state) outputs.append(output) logits =tf.matmul(outputs[-1], w) + b return logits # In[7]: pred = RNN(x, n_steps, n_input, n_hidden, n_classes) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Initializing the variables init = tf.global_variables_initializer() # In[8]: # Launch the graph sess.run(init) for step in range(20000): batch_x, batch_y = mnist.train.next_batch(batch_size) batch_x = batch_x.reshape((batch_size, n_steps, n_input)) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % 50 == 0: acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print "Iter " + str(step) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) print "Optimization Finished!" # In[9]: # Calculate accuracy for 128 mnist test images test_len = batch_size test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label})
輸出如下:
Iter 0, Minibatch Loss= 2.540429, Training Accuracy= 0.07812 Iter 50, Minibatch Loss= 2.423611, Training Accuracy= 0.06250 Iter 100, Minibatch Loss= 2.318830, Training Accuracy= 0.13281 Iter 150, Minibatch Loss= 2.276640, Training Accuracy= 0.13281 Iter 200, Minibatch Loss= 2.276727, Training Accuracy= 0.12500 Iter 250, Minibatch Loss= 2.267064, Training Accuracy= 0.16406 Iter 300, Minibatch Loss= 2.234139, Training Accuracy= 0.19531 Iter 350, Minibatch Loss= 2.295060, Training Accuracy= 0.12500 Iter 400, Minibatch Loss= 2.261856, Training Accuracy= 0.16406 Iter 450, Minibatch Loss= 2.220284, Training Accuracy= 0.17969 Iter 500, Minibatch Loss= 2.276015, Training Accuracy= 0.13281 Iter 550, Minibatch Loss= 2.220499, Training Accuracy= 0.14062 Iter 600, Minibatch Loss= 2.219574, Training Accuracy= 0.11719 Iter 650, Minibatch Loss= 2.189177, Training Accuracy= 0.25781 Iter 700, Minibatch Loss= 2.195167, Training Accuracy= 0.19531 Iter 750, Minibatch Loss= 2.226459, Training Accuracy= 0.18750 Iter 800, Minibatch Loss= 2.148620, Training Accuracy= 0.23438 Iter 850, Minibatch Loss= 2.122925, Training Accuracy= 0.21875 Iter 900, Minibatch Loss= 2.065122, Training Accuracy= 0.24219 ... Iter 19350, Minibatch Loss= 0.001304, Training Accuracy= 1.00000 Iter 19400, Minibatch Loss= 0.000144, Training Accuracy= 1.00000 Iter 19450, Minibatch Loss= 0.000907, Training Accuracy= 1.00000 Iter 19500, Minibatch Loss= 0.002555, Training Accuracy= 1.00000 Iter 19550, Minibatch Loss= 0.002018, Training Accuracy= 1.00000 Iter 19600, Minibatch Loss= 0.000853, Training Accuracy= 1.00000 Iter 19650, Minibatch Loss= 0.001035, Training Accuracy= 1.00000 Iter 19700, Minibatch Loss= 0.007034, Training Accuracy= 0.99219 Iter 19750, Minibatch Loss= 0.000608, Training Accuracy= 1.00000 Iter 19800, Minibatch Loss= 0.002913, Training Accuracy= 1.00000 Iter 19850, Minibatch Loss= 0.003484, Training Accuracy= 1.00000 Iter 19900, Minibatch Loss= 0.005693, Training Accuracy= 1.00000 Iter 19950, Minibatch Loss= 0.001904, Training Accuracy= 1.00000 Optimization Finished! Testing Accuracy: 0.992188
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/38428.html
摘要:的卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用卷積神經(jīng)網(wǎng)絡(luò)的概念卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),它的人工神經(jīng)元可以響應(yīng)一部分覆蓋范圍內(nèi)的周圍單元,對于大型圖像處理有出色表現(xiàn)。 MNIST的卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)的概念 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種前饋神經(jīng)網(wǎng)絡(luò),它的人工神經(jīng)元可以響應(yīng)一部分覆蓋范圍內(nèi)的周圍單元,對于大型圖像處理有出色表現(xiàn)。[2] 它...
摘要:相比于直接使用搭建卷積神經(jīng)網(wǎng)絡(luò),將作為高級,并使用作為后端要簡單地多。測試一學(xué)習(xí)模型的類型卷積神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)集任務(wù)小圖片數(shù)據(jù)集目標(biāo)將圖片分類為個(gè)類別根據(jù)每一個(gè)的訓(xùn)練速度,要比快那么一點(diǎn)點(diǎn)。 如果我們對 Keras 在數(shù)據(jù)科學(xué)和深度學(xué)習(xí)方面的流行還有疑問,那么考慮一下所有的主流云平臺和深度學(xué)習(xí)框架的支持情況就能發(fā)現(xiàn)它的強(qiáng)大之處。目前,Keras 官方版已經(jīng)支持谷歌的 TensorFlow、微軟的...
摘要:深度學(xué)習(xí)在過去的幾年里取得了許多驚人的成果,均與息息相關(guān)。機(jī)器學(xué)習(xí)進(jìn)階筆記之一安裝與入門是基于進(jìn)行研發(fā)的第二代人工智能學(xué)習(xí)系統(tǒng),被廣泛用于語音識別或圖像識別等多項(xiàng)機(jī)器深度學(xué)習(xí)領(lǐng)域。零基礎(chǔ)入門深度學(xué)習(xí)長短時(shí)記憶網(wǎng)絡(luò)。 多圖|入門必看:萬字長文帶你輕松了解LSTM全貌 作者 | Edwin Chen編譯 | AI100第一次接觸長短期記憶神經(jīng)網(wǎng)絡(luò)(LSTM)時(shí),我驚呆了。原來,LSTM是神...
閱讀 2095·2021-11-02 14:48
閱讀 2771·2019-08-30 14:19
閱讀 2940·2019-08-30 13:19
閱讀 1308·2019-08-29 16:17
閱讀 3245·2019-08-26 14:05
閱讀 3000·2019-08-26 13:58
閱讀 3087·2019-08-23 18:10
閱讀 1114·2019-08-23 18:04