成人国产在线小视频_日韩寡妇人妻调教在线播放_色成人www永久在线观看_2018国产精品久久_亚洲欧美高清在线30p_亚洲少妇综合一区_黄色在线播放国产_亚洲另类技巧小说校园_国产主播xx日韩_a级毛片在线免费

資訊專欄INFORMATION COLUMN

crawl facebook user basic infomation and photos

arashicage / 3608人閱讀

摘要:前言自從之前爬取后公司要求對進(jìn)行爬取,瞬間心中有一萬只。畢竟這些社交網(wǎng)絡(luò)的站點(diǎn)反爬機(jī)制做的很不錯(cuò)。但既然上面安排下來只能硬著頭皮上了。通過抓包,發(fā)現(xiàn)登陸站點(diǎn)的數(shù)據(jù)相比要簡單所有就寫了一套利用爬取的爬蟲。

前言

自從之前爬取twitter后公司要求對fancebook進(jìn)行爬取,瞬間心中有一萬只×××。畢竟這些社交網(wǎng)絡(luò)的站點(diǎn)反爬機(jī)制做的很不錯(cuò)。但既然上面安排下來只能硬著頭皮上了。通過抓包,發(fā)現(xiàn)登陸m.facebook.com站點(diǎn)psot的數(shù)據(jù)相比facebook.com要簡單,所有就寫了一套利用scrapy爬取facebook的爬蟲。

模擬登陸
from scrapy import Spider
from scrapy.http import Request, FormRequest


class FacebookLogin(Spider):
    download_delay = 0.5

    usr = "××××" # your username/email/phone number
    pwd = "××××" #account password

    def start_requests(self):
        return [Request("https://m.facebook.com/", callback=self.parse)]

    def parse(self, response):
        return FormRequest.from_response(response,
                                            formdata={
                                                "email": self.usr,
                                                "pass": self.pwd
                                            }, callback=self.remember_browser)

    def remember_browser(self, response):
        # if re.search(r"(checkpoint)", response.url):
            # Use "save_device" instead of "dont_save" to save device
        return FormRequest.from_response(response,
                                                formdata={"name_action_selected": "dont_save"},
                                                callback=self.after_login)

    def after_login(self, response):
        pass

注:為了保險(xiǎn)起見可以在seething文件中添加一個(gè)手機(jī)端的USER-AGENT

爬取用戶基本信息
# -*- coding: UTF-8 -*-
import re
from urlparse import urljoin

from scrapy import Item, Field
from scrapy.http import Request
from scrapy.selector import Selector

from facebook_login import FacebookLogin


class FacebookItems(Item):
    id = Field()
    url = Field()
    name = Field()
    work = Field()
    education = Field()
    family = Field()
    skills = Field()
    address = Field()
    contact_info = Field()
    basic_info = Field()
    bio = Field()
    quote = Field()
    nicknames = Field()
    relationship = Field()
    image_urls = Field()

class FacebookProfile(FacebookLogin):
    download_delay = 2
    name = "fb"
    links = None
    start_ids = [
        "plok74122", "bear.black.12","tabaco.wang","chaolin.chang.q","ahsien.liu","kaiwen.cheng.100","liang.kevin.92","bingheng.tsai.9","psppupu",
                  "cscgbakery","hc.shiao.l","asusisbad","benjamin","franklin",
        # "RobertScoble"
    ]
                  # "https://m.facebook.com/tabaco.wang?v=info","https://m.facebook.com/RobertScoble?v=info"]

    def after_login(self, response):
        for id in self.start_ids:
            url = "https://m.facebook.com/%s?v=info" %id
            yield Request(url, callback=self.parse_profile,meta={"id":id})

    def parse_profile(self, response):
        item = FacebookItems()

        item["id"] = response.meta["id"]
        item["url"] = response.url
        item["name"] = "".join(response.css("#root strong *::text").extract())

        item["work"] = self.parse_info_has_image(response, response.css("#work"))
        item["education"] = self.parse_info_has_image(response, response.css("#education"))
        item["family"] = self.parse_info_has_image(response, response.css("#family"))

        item["address"] = self.parse_info_has_table(response.css("#living"))
        item["contact_info"] = self.parse_info_has_table(response.css("#contact-info"))
        item["basic_info"] = self.parse_info_has_table(response.css("#basic-info"))
        item["nicknames"] = self.parse_info_has_table(response.css("#nicknames"))

        item["skills"] = self.parse_info_text_only(response.css("#skills"))
        item["bio"] = self.parse_info_text_only(response.css("#bio"))
        item["quote"] = self.parse_info_text_only(response.css("#quote"))
        item["relationship"] = self.parse_info_text_only(response.css("#relationship"))

        yield item


    def parse_info_has_image(self, response, css_path):
        info_list = []
        for div in css_path.xpath("div/div[2]/div"):
            url = urljoin(response.url, "".join(div.css("div > a::attr(href)").extract()))
            title = "".join(div.css("div").xpath("span | h3").xpath("a/text()").extract())
            info = "
".join(div.css("div").xpath("span | h3").xpath("text()").extract())
            if url and title and info:
                info_list.append({"url": url, "title": title, "info": info})
        return info_list

    def parse_info_has_table(self, css_path):
        info_dict = {}
        for div in css_path.xpath("div/div[2]/div"):
            key = "".join(div.css("td:first-child div").xpath("span | span/span[1]").xpath("text()").extract())
            value = "".join(div.css("td:last-child").xpath("div//text()").extract()).strip()
            if key and value:
                if key in info_dict:
                    info_dict[key] += ", %s" % value
                else:
                    info_dict[key] = value
        return info_dict

    def parse_info_text_only(self, css_path):
        text = css_path.xpath("div/div[2]//text()").extract()
        text = [t.strip() for t in text]
        text = [t for t in text if re.search("w+", t) and t != "Edit"]
        return "
".join(text)
爬取用戶的所有圖片

雖然圖片在https://m.facebook.com/%s?v=info中會(huì)有顯示,但是真正的圖片鏈接卻需要幾次請求之后才能拿到,本作在spider中盡量少的操作原則故將抓取圖片也多帶帶寫成了一個(gè)爬蟲,如下:

# -*- coding: UTF-8 -*-
from scrapy.spider import CrawlSpider,Rule,Spider
from scrapy.linkextractor import LinkExtractor
from facebook_login import FacebookLogin
from scrapy.http import Request
from scrapy.selector import Selector
from scrapy import Item, Field
import re,hashlib
import sys
reload(sys)
sys.setdefaultencoding("utf-8")

class FacebookPhotoItems(Item):
    url = Field()
    id = Field()
    photo_links = Field()
    md5 = Field()
class CrawlPhoto(FacebookLogin):
    name = "fbphoto"
    timelint_photo = None
    id = None
    links = []
    start_ids = [
        "plok74122", "bear.black.12", "tabaco.wang", "chaolin.chang.q",
        # "ashien.liu",
        "liang.kevin.92","qia.chen",
        "bingheng.tsai.9", "psppupu",
        "cscgbakery", "hc.shiao.l", "asusisbad", "benjamin", "franklin",
        # "RobertScoble"
    ]

    def after_login(self, response):
        for url in self.start_ids:
            yield Request("https://m.facebook.com/%s/photos"%url,callback=self.parse_item,meta={"id":url})
        # yield Request("https://m.facebook.com/%s/photos"%self.id,callback=self.parse_item)
    def parse_item(self,response):
        # print response.body
        urls = response.xpath("http://span").extract()
        next_page = None
        try:
            next_page = response.xpath("http://div[@class="co"]/a/@href").extract()[0].strip()
        except:
            pass
        # urls = response.xpath("http://div[@data-sigil="marea"]").extract()
        for i in urls:
            # if i.find(u"時(shí)間線照片")!=-1:
            try:
                self.timeline_photo = Selector(text=i).xpath("http://span/a/@href").extract()[0]
                if self.timeline_photo is not None:
                    yield Request("https://m.facebook.com/%s"%self.timeline_photo,callback=self.parse_photos,meta=response.meta)
            except:
                continue
        if next_page:
            print "-----------------------next image page -----------------------------------------"
            yield Request("https://m.facebook.com/%s"%next_page,callback=self.parse_item,meta=response.meta)
    def parse_photos(self,response):
        urls = response.xpath("http://a[@class="bw bx"]/@href").extract()
        # urls = response.xpath("http://a[@class="_39pi _4i6j"]/@href").extract()
        for i in urls:
            yield Request("https://m.facebook.com/%s"%i,callback=self.process_photo_url,meta=response.meta)
        if len(urls) == 12:
            next_page = response.xpath("http://div[@id="m_more_item"]/a/@href").extract()[0]
            yield Request("https://m.facebook.com/%s"%next_page,callback=self.parse_photos,meta=response.meta)
    def process_photo_url(self,response):
        # photo_url = response.xpath("http://i[@class="img img"]").extract()
        item = FacebookPhotoItems()
        item["url"] = response.url
        item["id"] = response.meta["id"]
        photo_url = response.xpath("http://div[@style="text-align:center;"]/img/@src").extract()[0]
        item["photo_links"] = photo_url
        item["md5"] = self.getstr_md5(item["photo_links"])+".jpg"
        yield item

    def wirtefile(self,str):
        with open("temp2.html","w") as file:
            file.write(str)
            file.write("
")

    def getstr_md5(self, input):
        if input is None:
            input = ""
        md = hashlib.md5()
        md.update(input)
        return md.hexdigest()

因?yàn)槲业膒ython水平也是半路出家,所有還沒有找到一個(gè)好的辦法將圖片鏈接的抓取集成到抓取基本信息的那個(gè)爬蟲上,如果有大神知道還請指點(diǎn)一二。
下載圖片沒有使用scrapy的imagePipline,而是使用的wget命令,原因就是上面所說,python水平太菜。。。
下面是自己寫的一個(gè)下載圖片的pipline:

class MyOwenImageDownload(object):
    def process_item(self, item,spider):
        if len(item) >6:
            pass
        else:
            file = "image/"+item["id"]
            if os.path.exists(file):
                pass
            else:
                os.makedirs(file)
            cmd = "wget "%s" -O %s -P %s --timeout=10 -q"%(item["photo_links"],file+"/"+item["md5"],file)
            os.system(cmd)
        return item
結(jié)語

至此,整個(gè)爬蟲基本的結(jié)構(gòu)已經(jīng)寫完。。。源碼地址

In the end, we will remember not the words of our enemies but the silence of our friends

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/38167.html

相關(guān)文章

  • Basic認(rèn)證

    摘要:用戶輸入用戶名和密碼后,用戶名和密碼會(huì)經(jīng)過加密附加到請求信息中再次請求服務(wù)器,服務(wù)器會(huì)根據(jù)請求頭攜帶的認(rèn)證信息,決定是否認(rèn)證成功及做出相應(yīng)的響應(yīng)。給出的認(rèn)證提示。認(rèn)證窗口關(guān)閉之前,瀏覽器狀態(tài)一直是等待用戶輸入。 Basic 概述 Basic 認(rèn)證是HTTP 中非常簡單的認(rèn)證方式,因?yàn)楹唵危圆皇呛馨踩?,不過仍然非常常用。 當(dāng)一個(gè)客戶端向一個(gè)需要認(rèn)證的HTTP服務(wù)器進(jìn)行數(shù)據(jù)請求時(shí),如果...

    testHs 評論0 收藏0
  • 使用Python開始Web Scraping

    摘要:主要元素是身體內(nèi)容,可以表示為。提取每個(gè)元素的文本并最終組成單個(gè)文本。我們將使用故意慢的服務(wù)器來顯示這一點(diǎn)。是表示值的承諾的對象。我們將使用倉庫中提供的準(zhǔn)備示例作為示例。請注意,其余代碼基本上不受影響除了返回函數(shù)中的源鏈接。 showImg(https://segmentfault.com/img/remote/1460000019190698?w=480&h=260); 來源 | ...

    fobnn 評論0 收藏0
  • scrapy入門教程——爬取豆瓣電影Top250!

    摘要:注意爬豆爬一定要加入選項(xiàng),因?yàn)橹灰馕龅骄W(wǎng)站的有,就會(huì)自動(dòng)進(jìn)行過濾處理,把處理結(jié)果分配到相應(yīng)的類別,但偏偏豆瓣里面的為空不需要分配,所以一定要關(guān)掉這個(gè)選項(xiàng)。 本課只針對python3環(huán)境下的Scrapy版本(即scrapy1.3+) 選取什么網(wǎng)站來爬取呢? 對于歪果人,上手練scrapy爬蟲的網(wǎng)站一般是官方練手網(wǎng)站 http://quotes.toscrape.com 我們中國人,當(dāng)然...

    senntyou 評論0 收藏0
  • 10、web爬蟲講解2—Scrapy框架爬蟲—Scrapy安裝—Scrapy指令

    摘要:負(fù)責(zé)處理被提取出來的。典型的處理有清理驗(yàn)證及持久化例如存取到數(shù)據(jù)庫知識庫項(xiàng)目的設(shè)置文件實(shí)現(xiàn)自定義爬蟲的目錄中間件是在引擎及之間的特定鉤子,處理的輸入和輸出及。 【百度云搜索:http://www.bdyss.com】 【搜網(wǎng)盤:http://www.swpan.cn】 Scrapy框架安裝 1、首先,終端執(zhí)行命令升級pip: python -m pip install --upgrad...

    OnlyMyRailgun 評論0 收藏0
  • Python Scrapy爬蟲框架學(xué)習(xí)

    摘要:組件引擎負(fù)責(zé)控制數(shù)據(jù)流在系統(tǒng)中所有組件中流動(dòng),并在相應(yīng)動(dòng)作發(fā)生時(shí)觸發(fā)事件。下載器下載器負(fù)責(zé)獲取頁面數(shù)據(jù)并提供給引擎,而后提供給。下載器中間件下載器中間件是在引擎及下載器之間的特定鉤子,處理傳遞給引擎的。 Scrapy 是用Python實(shí)現(xiàn)一個(gè)為爬取網(wǎng)站數(shù)據(jù)、提取結(jié)構(gòu)性數(shù)據(jù)而編寫的應(yīng)用框架。 一、Scrapy框架簡介 Scrapy是一個(gè)為了爬取網(wǎng)站數(shù)據(jù),提取結(jié)構(gòu)性數(shù)據(jù)而編寫的應(yīng)用框架。 ...

    harriszh 評論0 收藏0

發(fā)表評論

0條評論

最新活動(dòng)
閱讀需要支付1元查看
<