摘要:與通過來自定義監(jiān)控指標(biāo)自動(dòng)擴(kuò)展是一種根據(jù)資源使用情況自動(dòng)擴(kuò)展或縮小工作負(fù)載的方法。適配器刪除后綴并將度量標(biāo)記為計(jì)數(shù)器度量標(biāo)準(zhǔn)。負(fù)載測(cè)試完成后,會(huì)將部署縮到其初始副本您可能已經(jīng)注意到自動(dòng)縮放器不會(huì)立即對(duì)使用峰值做出反應(yīng)。
k8s與HPA--通過 Prometheus adaptor 來自定義監(jiān)控指標(biāo)
自動(dòng)擴(kuò)展是一種根據(jù)資源使用情況自動(dòng)擴(kuò)展或縮小工作負(fù)載的方法。 Kubernetes中的自動(dòng)縮放有兩個(gè)維度:Cluster Autoscaler處理節(jié)點(diǎn)擴(kuò)展操作,Horizo??ntal Pod Autoscaler自動(dòng)擴(kuò)展部署或副本集中的pod數(shù)量。 Cluster Autoscaling與Horizo??ntal Pod Autoscaler一起用于動(dòng)態(tài)調(diào)整計(jì)算能力以及系統(tǒng)滿足SLA所需的并行度。雖然Cluster Autoscaler高度依賴托管您的集群的云提供商的基礎(chǔ)功能,但HPA可以獨(dú)立于您的IaaS / PaaS提供商運(yùn)營。
Horizo??ntal Pod Autoscaler功能最初是在Kubernetes v1.1中引入的,并且從那時(shí)起已經(jīng)發(fā)展了很多。 HPA縮放容器的版本1基于觀察到的CPU利用率,后來基于內(nèi)存使用情況。在Kubernetes 1.6中,引入了一個(gè)新的API Custom Metrics API,使HPA能夠訪問任意指標(biāo)。 Kubernetes 1.7引入了聚合層,允許第三方應(yīng)用程序通過將自己注冊(cè)為API附加組件來擴(kuò)展Kubernetes API。 Custom Metrics API和聚合層使Prometheus等監(jiān)控系統(tǒng)可以向HPA控制器公開特定于應(yīng)用程序的指標(biāo)。
Horizo??ntal Pod Autoscaler實(shí)現(xiàn)為一個(gè)控制循環(huán),定期查詢Resource Metrics API以獲取CPU /內(nèi)存等核心指標(biāo)和針對(duì)特定應(yīng)用程序指標(biāo)的Custom Metrics API。
以下是為Kubernetes 1.9或更高版本配置HPA v2的分步指南。您將安裝提供核心指標(biāo)的Metrics Server附加組件,然后您將使用演示應(yīng)用程序根據(jù)CPU和內(nèi)存使用情況展示pod自動(dòng)擴(kuò)展。在本指南的第二部分中,您將部署Prometheus和自定義API服務(wù)器。您將使用聚合器層注冊(cè)自定義API服務(wù)器,然后使用演示應(yīng)用程序提供的自定義指標(biāo)配置HPA。
在開始之前,您需要安裝Go 1.8或更高版本并在GOPATH中克隆k8s-prom-hpa repo。
cd $GOPATH git clone https://github.com/stefanprodan/k8s-prom-hpa部署 Metrics Server
kubernetes Metrics Server是資源使用數(shù)據(jù)的集群范圍聚合器,是Heapster的后繼者。度量服務(wù)器通過匯集來自kubernetes.summary_api的數(shù)據(jù)來收集節(jié)點(diǎn)和pod的CPU和內(nèi)存使用情況。摘要API是一種內(nèi)存高效的API,用于將數(shù)據(jù)從Kubelet / cAdvisor傳遞到度量服務(wù)器。
在HPA的第一個(gè)版本中,您需要Heapster來提供CPU和內(nèi)存指標(biāo),在HPA v2和Kubernetes 1.8中,只有在啟用horizo??ntal-pod-autoscaler-use-rest-clients時(shí)才需要指標(biāo)服務(wù)器。默認(rèn)情況下,Kubernetes 1.9中啟用了HPA rest客戶端。 GKE 1.9附帶預(yù)安裝的Metrics Server。
在kube-system命名空間中部署Metrics Server:
kubectl create -f ./metrics-server
一分鐘后,度量服務(wù)器開始報(bào)告節(jié)點(diǎn)和pod的CPU和內(nèi)存使用情況。
查看nodes metrics:
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" | jq .
結(jié)果如下:
{ "kind": "NodeMetricsList", "apiVersion": "metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes" }, "items": [ { "metadata": { "name": "ip-10-1-50-61.ec2.internal", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-50-61.ec2.internal", "creationTimestamp": "2019-02-13T08:34:05Z" }, "timestamp": "2019-02-13T08:33:38Z", "window": "30s", "usage": { "cpu": "78322168n", "memory": "563180Ki" } }, { "metadata": { "name": "ip-10-1-57-40.ec2.internal", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-57-40.ec2.internal", "creationTimestamp": "2019-02-13T08:34:05Z" }, "timestamp": "2019-02-13T08:33:42Z", "window": "30s", "usage": { "cpu": "48926263n", "memory": "554472Ki" } }, { "metadata": { "name": "ip-10-1-62-29.ec2.internal", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-62-29.ec2.internal", "creationTimestamp": "2019-02-13T08:34:05Z" }, "timestamp": "2019-02-13T08:33:36Z", "window": "30s", "usage": { "cpu": "36700681n", "memory": "326088Ki" } } ] }
查看pods metrics:
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/pods" | jq .
結(jié)果如下:
{ "kind": "PodMetricsList", "apiVersion": "metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/metrics.k8s.io/v1beta1/pods" }, "items": [ { "metadata": { "name": "kube-proxy-77nt2", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-77nt2", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:00Z", "window": "30s", "containers": [ { "name": "kube-proxy", "usage": { "cpu": "2370555n", "memory": "13184Ki" } } ] }, { "metadata": { "name": "cluster-autoscaler-n2xsl", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/cluster-autoscaler-n2xsl", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:12Z", "window": "30s", "containers": [ { "name": "cluster-autoscaler", "usage": { "cpu": "1477997n", "memory": "54584Ki" } } ] }, { "metadata": { "name": "core-dns-autoscaler-b4785d4d7-j64xd", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/core-dns-autoscaler-b4785d4d7-j64xd", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:08Z", "window": "30s", "containers": [ { "name": "autoscaler", "usage": { "cpu": "191293n", "memory": "7956Ki" } } ] }, { "metadata": { "name": "spot-interrupt-handler-8t2xk", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/spot-interrupt-handler-8t2xk", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:04Z", "window": "30s", "containers": [ { "name": "spot-interrupt-handler", "usage": { "cpu": "844907n", "memory": "4608Ki" } } ] }, { "metadata": { "name": "kube-proxy-t5kqm", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-t5kqm", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:08Z", "window": "30s", "containers": [ { "name": "kube-proxy", "usage": { "cpu": "1194766n", "memory": "12204Ki" } } ] }, { "metadata": { "name": "kube-proxy-zxmqb", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-zxmqb", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:06Z", "window": "30s", "containers": [ { "name": "kube-proxy", "usage": { "cpu": "3021117n", "memory": "13628Ki" } } ] }, { "metadata": { "name": "aws-node-rcz5c", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-rcz5c", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:15Z", "window": "30s", "containers": [ { "name": "aws-node", "usage": { "cpu": "1217989n", "memory": "24976Ki" } } ] }, { "metadata": { "name": "aws-node-z2qxs", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-z2qxs", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:15Z", "window": "30s", "containers": [ { "name": "aws-node", "usage": { "cpu": "1025780n", "memory": "46424Ki" } } ] }, { "metadata": { "name": "php-apache-899d75b96-8ppk4", "namespace": "default", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/php-apache-899d75b96-8ppk4", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:08Z", "window": "30s", "containers": [ { "name": "php-apache", "usage": { "cpu": "24612n", "memory": "27556Ki" } } ] }, { "metadata": { "name": "load-generator-779c5f458c-9sglg", "namespace": "default", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/load-generator-779c5f458c-9sglg", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:34:56Z", "window": "30s", "containers": [ { "name": "load-generator", "usage": { "cpu": "0", "memory": "336Ki" } } ] }, { "metadata": { "name": "aws-node-v9jxs", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-v9jxs", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:00Z", "window": "30s", "containers": [ { "name": "aws-node", "usage": { "cpu": "1303458n", "memory": "28020Ki" } } ] }, { "metadata": { "name": "kube2iam-m2ktt", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-m2ktt", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:11Z", "window": "30s", "containers": [ { "name": "kube2iam", "usage": { "cpu": "1328864n", "memory": "9724Ki" } } ] }, { "metadata": { "name": "kube2iam-w9cqf", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-w9cqf", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:03Z", "window": "30s", "containers": [ { "name": "kube2iam", "usage": { "cpu": "1294379n", "memory": "8812Ki" } } ] }, { "metadata": { "name": "custom-metrics-apiserver-657644489c-pk8rb", "namespace": "monitoring", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/monitoring/pods/custom-metrics-apiserver-657644489c-pk8rb", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:04Z", "window": "30s", "containers": [ { "name": "custom-metrics-apiserver", "usage": { "cpu": "22409370n", "memory": "42468Ki" } } ] }, { "metadata": { "name": "kube2iam-qghgt", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-qghgt", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:11Z", "window": "30s", "containers": [ { "name": "kube2iam", "usage": { "cpu": "2078992n", "memory": "16356Ki" } } ] }, { "metadata": { "name": "spot-interrupt-handler-ps745", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/spot-interrupt-handler-ps745", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:10Z", "window": "30s", "containers": [ { "name": "spot-interrupt-handler", "usage": { "cpu": "611566n", "memory": "4336Ki" } } ] }, { "metadata": { "name": "coredns-68fb7946fb-2xnpp", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/coredns-68fb7946fb-2xnpp", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:12Z", "window": "30s", "containers": [ { "name": "coredns", "usage": { "cpu": "1610381n", "memory": "10480Ki" } } ] }, { "metadata": { "name": "coredns-68fb7946fb-9ctjf", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/coredns-68fb7946fb-9ctjf", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:13Z", "window": "30s", "containers": [ { "name": "coredns", "usage": { "cpu": "1418850n", "memory": "9852Ki" } } ] }, { "metadata": { "name": "prometheus-7d4f6d4454-v4fnd", "namespace": "monitoring", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/monitoring/pods/prometheus-7d4f6d4454-v4fnd", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:00Z", "window": "30s", "containers": [ { "name": "prometheus", "usage": { "cpu": "17951807n", "memory": "202316Ki" } } ] }, { "metadata": { "name": "metrics-server-7cdd54ccb4-k2x7m", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/metrics-server-7cdd54ccb4-k2x7m", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:04Z", "window": "30s", "containers": [ { "name": "metrics-server-nanny", "usage": { "cpu": "144656n", "memory": "5716Ki" } }, { "name": "metrics-server", "usage": { "cpu": "568327n", "memory": "16268Ki" } } ] } ] }基于CPU和內(nèi)存使用情況的Auto Scaling
您將使用基于Golang的小型Web應(yīng)用程序來測(cè)試Horizo??ntal Pod Autoscaler(HPA)。
將podinfo部署到默認(rèn)命名空間:
kubectl create -f ./podinfo/podinfo-svc.yaml,./podinfo/podinfo-dep.yaml
使用NodePort服務(wù)訪問podinfo,地址為http://
接下來定義一個(gè)至少維護(hù)兩個(gè)副本的HPA,如果CPU平均值超過80%或內(nèi)存超過200Mi,則最多可擴(kuò)展到10個(gè):
apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: podinfo spec: scaleTargetRef: apiVersion: extensions/v1beta1 kind: Deployment name: podinfo minReplicas: 2 maxReplicas: 10 metrics: - type: Resource resource: name: cpu targetAverageUtilization: 80 - type: Resource resource: name: memory targetAverageValue: 200Mi
創(chuàng)建這個(gè)hpa:
kubectl create -f ./podinfo/podinfo-hpa.yaml
幾秒鐘后,HPA控制器聯(lián)系度量服務(wù)器,然后獲取CPU和內(nèi)存使用情況:
kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE podinfo Deployment/podinfo 2826240 / 200Mi, 15% / 80% 2 10 2 5m
為了增加CPU使用率,請(qǐng)使用rakyll / hey運(yùn)行負(fù)載測(cè)試:
#install hey go get -u github.com/rakyll/hey #do 10K requests hey -n 10000 -q 10 -c 5 http://:31198/
您可以使用以下方式監(jiān)控HPA事件:
$ kubectl describe hpa Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 7m horizontal-pod-autoscaler New size: 4; reason: cpu resource utilization (percentage of request) above target Normal SuccessfulRescale 3m horizontal-pod-autoscaler New size: 8; reason: cpu resource utilization (percentage of request) above target
暫時(shí)刪除podinfo。稍后將在本教程中再次部署它:
kubectl delete -f ./podinfo/podinfo-hpa.yaml,./podinfo/podinfo-dep.yaml,./podinfo/podinfo-svc.yaml部署 Custom Metrics Server
要根據(jù)自定義指標(biāo)進(jìn)行擴(kuò)展,您需要擁有兩個(gè)組件。一個(gè)組件,用于從應(yīng)用程序收集指標(biāo)并將其存儲(chǔ)在Prometheus時(shí)間序列數(shù)據(jù)庫中。第二個(gè)組件使用collect(k8s-prometheus-adapter)提供的指標(biāo)擴(kuò)展了Kubernetes自定義指標(biāo)API。
您將在專用命名空間中部署Prometheus和適配器。
創(chuàng)建monitoring命名空間:
kubectl create -f ./namespaces.yaml
在monitoring命名空間中部署Prometheus v2:
kubectl create -f ./prometheus
生成Prometheus適配器所需的TLS證書:
make certs
生成以下幾個(gè)文件:
# ls output apiserver.csr apiserver-key.pem apiserver.pem
部署Prometheus自定義指標(biāo)API適配器:
kubectl create -f ./custom-metrics-api
列出Prometheus提供的自定義指標(biāo):
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1" | jq .
獲取monitoring命名空間中所有pod的FS使用情況:
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitoring/pods/*/fs_usage_bytes" | jq .
查詢結(jié)果如下:
{ "kind": "MetricValueList", "apiVersion": "custom.metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitoring/pods/%2A/fs_usage_bytes" }, "items": [ { "describedObject": { "kind": "Pod", "namespace": "monitoring", "name": "custom-metrics-apiserver-657644489c-pk8rb", "apiVersion": "/v1" }, "metricName": "fs_usage_bytes", "timestamp": "2019-02-13T08:52:30Z", "value": "94253056" }, { "describedObject": { "kind": "Pod", "namespace": "monitoring", "name": "prometheus-7d4f6d4454-v4fnd", "apiVersion": "/v1" }, "metricName": "fs_usage_bytes", "timestamp": "2019-02-13T08:52:30Z", "value": "24576" } ] }基于custom metrics 自動(dòng)伸縮
在默認(rèn)命名空間中創(chuàng)建podinfo NodePort服務(wù)和部署:
kubectl create -f ./podinfo/podinfo-svc.yaml,./podinfo/podinfo-dep.yaml
podinfo應(yīng)用程序公開名為http_requests_total的自定義指標(biāo)。 Prometheus適配器刪除_total后綴并將度量標(biāo)記為計(jì)數(shù)器度量標(biāo)準(zhǔn)。
從自定義指標(biāo)API獲取每秒的總請(qǐng)求數(shù):
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/http_requests" | jq .
{ "kind": "MetricValueList", "apiVersion": "custom.metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/%2A/http_requests" }, "items": [ { "describedObject": { "kind": "Pod", "namespace": "default", "name": "podinfo-6b86c8ccc9-kv5g9", "apiVersion": "/__internal" }, "metricName": "http_requests", "timestamp": "2018-01-10T16:49:07Z", "value": "901m" }, { "describedObject": { "kind": "Pod", "namespace": "default", "name": "podinfo-6b86c8ccc9-nm7bl", "apiVersion": "/__internal" }, "metricName": "http_requests", "timestamp": "2018-01-10T16:49:07Z", "value": "898m" } ] }
建一個(gè)HPA,如果請(qǐng)求數(shù)超過每秒10個(gè),將擴(kuò)展podinfo部署:
apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: podinfo spec: scaleTargetRef: apiVersion: extensions/v1beta1 kind: Deployment name: podinfo minReplicas: 2 maxReplicas: 10 metrics: - type: Pods pods: metricName: http_requests targetAverageValue: 10
在默認(rèn)命名空間中部署podinfo HPA:
kubectl create -f ./podinfo/podinfo-hpa-custom.yaml
幾秒鐘后,HPA從指標(biāo)API獲取http_requests值:
kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE podinfo Deployment/podinfo 899m / 10 2 10 2 1m
在podinfo服務(wù)上應(yīng)用一些負(fù)載,每秒25個(gè)請(qǐng)求:
#install hey go get -u github.com/rakyll/hey #do 10K requests rate limited at 25 QPS hey -n 10000 -q 5 -c 5 http://:31198/healthz
幾分鐘后,HPA開始擴(kuò)展部署:
kubectl describe hpa Name: podinfo Namespace: default Reference: Deployment/podinfo Metrics: ( current / target ) "http_requests" on pods: 9059m / 10 Min replicas: 2 Max replicas: 10 Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 2m horizontal-pod-autoscaler New size: 3; reason: pods metric http_requests above target
按照當(dāng)前的每秒請(qǐng)求速率,部署永遠(yuǎn)不會(huì)達(dá)到10個(gè)pod的最大值。三個(gè)復(fù)制品足以使每個(gè)吊艙的RPS保持在10以下。
負(fù)載測(cè)試完成后,HPA會(huì)將部署縮到其初始副本:
Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 5m horizontal-pod-autoscaler New size: 3; reason: pods metric http_requests above target Normal SuccessfulRescale 21s horizontal-pod-autoscaler New size: 2; reason: All metrics below target
您可能已經(jīng)注意到自動(dòng)縮放器不會(huì)立即對(duì)使用峰值做出反應(yīng)。默認(rèn)情況下,度量標(biāo)準(zhǔn)同步每30秒發(fā)生一次,只有在最后3-5分鐘內(nèi)沒有重新縮放時(shí)才能進(jìn)行擴(kuò)展/縮小。通過這種方式,HPA可以防止快速執(zhí)行沖突的決策,并為Cluster Autoscaler提供時(shí)間。
結(jié)論并非所有系統(tǒng)都可以通過多帶帶依賴CPU /內(nèi)存使用指標(biāo)來滿足其SLA,大多數(shù)Web和移動(dòng)后端需要基于每秒請(qǐng)求進(jìn)行自動(dòng)擴(kuò)展以處理任何流量突發(fā)。對(duì)于ETL應(yīng)用程序,可以通過作業(yè)隊(duì)列長(zhǎng)度超過某個(gè)閾值等來觸發(fā)自動(dòng)縮放。通過使用Prometheus檢測(cè)應(yīng)用程序并公開正確的自動(dòng)縮放指標(biāo),您可以對(duì)應(yīng)用程序進(jìn)行微調(diào),以更好地處理突發(fā)并確保高可用性。
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/28085.html
摘要:與通過來自定義監(jiān)控指標(biāo)自動(dòng)擴(kuò)展是一種根據(jù)資源使用情況自動(dòng)擴(kuò)展或縮小工作負(fù)載的方法。適配器刪除后綴并將度量標(biāo)記為計(jì)數(shù)器度量標(biāo)準(zhǔn)。負(fù)載測(cè)試完成后,會(huì)將部署縮到其初始副本您可能已經(jīng)注意到自動(dòng)縮放器不會(huì)立即對(duì)使用峰值做出反應(yīng)。 k8s與HPA--通過 Prometheus adaptor 來自定義監(jiān)控指標(biāo) 自動(dòng)擴(kuò)展是一種根據(jù)資源使用情況自動(dòng)擴(kuò)展或縮小工作負(fù)載的方法。 Kubernetes中的自...
摘要:與通過來自定義監(jiān)控指標(biāo)自動(dòng)擴(kuò)展是一種根據(jù)資源使用情況自動(dòng)擴(kuò)展或縮小工作負(fù)載的方法。適配器刪除后綴并將度量標(biāo)記為計(jì)數(shù)器度量標(biāo)準(zhǔn)。負(fù)載測(cè)試完成后,會(huì)將部署縮到其初始副本您可能已經(jīng)注意到自動(dòng)縮放器不會(huì)立即對(duì)使用峰值做出反應(yīng)。 k8s與HPA--通過 Prometheus adaptor 來自定義監(jiān)控指標(biāo) 自動(dòng)擴(kuò)展是一種根據(jù)資源使用情況自動(dòng)擴(kuò)展或縮小工作負(fù)載的方法。 Kubernetes中的自...
摘要:自定義指標(biāo)由提供,由此可支持任意采集到的指標(biāo)。文件清單的,收集級(jí)別的監(jiān)控?cái)?shù)據(jù)監(jiān)控服務(wù)端,從拉數(shù)據(jù)并存儲(chǔ)為時(shí)序數(shù)據(jù)。本文為容器監(jiān)控實(shí)踐系列文章,完整內(nèi)容見 概述 上文metric-server提到,kubernetes的監(jiān)控指標(biāo)分為兩種: Core metrics(核心指標(biāo)):從 Kubelet、cAdvisor 等獲取度量數(shù)據(jù),再由metrics-server提供給 Dashboar...
摘要:自定義指標(biāo)由提供,由此可支持任意采集到的指標(biāo)。文件清單的,收集級(jí)別的監(jiān)控?cái)?shù)據(jù)監(jiān)控服務(wù)端,從拉數(shù)據(jù)并存儲(chǔ)為時(shí)序數(shù)據(jù)。本文為容器監(jiān)控實(shí)踐系列文章,完整內(nèi)容見 概述 上文metric-server提到,kubernetes的監(jiān)控指標(biāo)分為兩種: Core metrics(核心指標(biāo)):從 Kubelet、cAdvisor 等獲取度量數(shù)據(jù),再由metrics-server提供給 Dashboar...
摘要:還可以把數(shù)據(jù)導(dǎo)入到第三方工具展示或使用場(chǎng)景共同組成了一個(gè)流行的監(jiān)控解決方案原生的監(jiān)控圖表信息來自在中也用到了,將作為,向其獲取,作為水平擴(kuò)縮容的監(jiān)控依據(jù)監(jiān)控指標(biāo)流程首先從獲取集群中所有的信息。 概述 該項(xiàng)目將被廢棄(RETIRED) Heapster是Kubernetes旗下的一個(gè)項(xiàng)目,Heapster是一個(gè)收集者,并不是采集 1.Heapster可以收集Node節(jié)點(diǎn)上的cAdvis...
閱讀 1981·2019-08-30 15:54
閱讀 3608·2019-08-29 13:07
閱讀 3132·2019-08-29 12:39
閱讀 1799·2019-08-26 12:13
閱讀 1555·2019-08-23 18:31
閱讀 2167·2019-08-23 18:05
閱讀 1856·2019-08-23 18:00
閱讀 1052·2019-08-23 17:15