python import tensorflow as tf # Load Keras model model = tf.keras.models.load_model("my_model.h5") # Convert Keras model to TensorFlow Lite model converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Save TensorFlow Lite model with open("my_model.tflite", "wb") as f: f.write(tflite_model)2. 在移動設(shè)備上使用TensorFlow Lite運(yùn)行模型 將模型轉(zhuǎn)換為TensorFlow Lite格式后,可以在移動設(shè)備上使用TensorFlow Lite運(yùn)行模型。以下是在Android應(yīng)用程序中使用TensorFlow Lite運(yùn)行模型的示例代碼:
java import org.tensorflow.lite.Interpreter; import java.nio.ByteBuffer; // Load TensorFlow Lite model Interpreter interpreter = new Interpreter(loadModelFile()); // Prepare input buffer ByteBuffer inputBuffer = ByteBuffer.allocateDirect(4 * inputSize); inputBuffer.order(ByteOrder.nativeOrder()); // Prepare output buffer ByteBuffer outputBuffer = ByteBuffer.allocateDirect(4 * outputSize); outputBuffer.order(ByteOrder.nativeOrder()); // Run inference interpreter.run(inputBuffer, outputBuffer); // Get output float[] output = new float[outputSize]; outputBuffer.asFloatBuffer().get(output);在上面的代碼中,首先使用`Interpreter`類加載TensorFlow Lite模型。然后,準(zhǔn)備輸入和輸出緩沖區(qū),并調(diào)用`run`方法來運(yùn)行推理。最后,從輸出緩沖區(qū)中獲取結(jié)果。 3. 在TensorFlow Lite中使用量化技術(shù)以進(jìn)一步優(yōu)化模型 量化是一種可以將浮點(diǎn)數(shù)模型轉(zhuǎn)換為整數(shù)模型的技術(shù),這有助于減小模型的大小和提高模型在嵌入式設(shè)備上的速度和效率。TensorFlow Lite提供了量化技術(shù)的支持,可以使用命令行工具或API來進(jìn)行量化。以下是使用命令行工具進(jìn)行量化的示例代碼:
python import tensorflow as tf # Load Keras model model = tf.keras.models.load_model("my_model.h5") # Convert Keras model to TensorFlow Lite model with float16 quantization converter = tf.lite.TFLiteConverter.from_kerasTensorFlow Lite is a lightweight machine learning framework designed for embedded and mobile devices. It allows you to compress trained models into smaller binary files for running on mobile devices. This article will introduce the programming techniques of TensorFlow Lite, including how to convert a trained model to TensorFlow Lite format, how to use TensorFlow Lite to run the model on mobile devices, and how to use quantization techniques to further optimize the model in TensorFlow Lite. 1. Convert the model to TensorFlow Lite format Before using TensorFlow Lite, you need to convert the trained machine learning model to TensorFlow Lite format. You can use the command-line tools provided by TensorFlow to convert the model to the .tflite format. Here is an example code for converting a Keras model to a TensorFlow Lite model:python import tensorflow as tf # Load Keras model model = tf.keras.models.load_model("my_model.h5") # Convert Keras model to TensorFlow Lite model converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Save TensorFlow Lite model with open("my_model.tflite", "wb") as f: f.write(tflite_model)
2. Run the model with TensorFlow Lite on mobile devices After converting the model to TensorFlow Lite format, you can use TensorFlow Lite to run the model on mobile devices. Here is an example code for running the model with TensorFlow Lite in an Android application:java import org.tensorflow.lite.Interpreter; import java.nio.ByteBuffer; // Load TensorFlow Lite model Interpreter interpreter = new Interpreter(loadModelFile()); // Prepare input buffer ByteBuffer inputBuffer = ByteBuffer.allocateDirect(4 * inputSize); inputBuffer.order(ByteOrder.nativeOrder()); // Prepare output buffer ByteBuffer outputBuffer = ByteBuffer.allocateDirect(4 * outputSize); outputBuffer.order(ByteOrder.nativeOrder()); // Run inference interpreter.run(inputBuffer, outputBuffer); // Get output float[] output = new float[outputSize]; outputBuffer.asFloatBuffer().get(output);
In the above code, the TensorFlow Lite model is first loaded with the `Interpreter` class. Then, input and output buffers are prepared, and the `run` method is called to run the inference. Finally, the output is obtained from the output buffer. 3. Use quantization techniques in TensorFlow Lite to further optimize the model Quantization is a technique that can convert a floating-point model into an integer model, which helps reduce the size of the model and improve its speed and efficiency on embedded devices. TensorFlow Lite provides support for quantization techniques, and you can use the command-line tools or APIs for quantization. Here is an example code for quantization using command-line tools:python import tensorflow as tf # Load Keras model model = tf.keras.models.load_model("my_model.h5") # Convert Keras model to TensorFlow Lite model with float16 quantization converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.float16] tflite_model = converter.convert() # Save TensorFlow Lite model with open("my_model.tflite", "wb") as f: f.write(tflite_model) ``` In the above code, the `optimizations` parameter is set to `tf.lite.Optimize.DEFAULT` to enable default optimizations, and the `supported_types` parameter is set to `[tf.float16]` to use float16 quantization. Finally, the TensorFlow Lite model is saved to a binary file. In conclusion, TensorFlow Lite is a powerful tool for deploying machine learning models on embedded and mobile devices. By using TensorFlow Lite, you can
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/130620.html
摘要:近幾年來,由于其作為機(jī)器學(xué)習(xí)模型的使用已成倍增長,所以移動設(shè)備和嵌入式設(shè)備也出現(xiàn)了部署需求。使機(jī)器學(xué)習(xí)模型設(shè)備能夠?qū)崿F(xiàn)低延遲的推理。設(shè)計(jì)初衷輕量級允許在具有很小的二進(jìn)制大小和快速初始化啟動的機(jī)器學(xué)習(xí)模型設(shè)備上進(jìn)行推理。 谷歌今天終于發(fā)布了TensorFlow Lite 的開發(fā)者預(yù)覽!該項(xiàng)目是在5月份的I/O開發(fā)者大會上宣布的,據(jù)Google網(wǎng)站描述,對移動和嵌入式設(shè)備來說,TensorFlo...
摘要:如何進(jìn)行操作本文將介紹在有道云筆記中用于文檔識別的實(shí)踐過程,以及都有些哪些特性,供大家參考。年月發(fā)布后,有道技術(shù)團(tuán)隊(duì)第一時(shí)間跟進(jìn)框架,并很快將其用在了有道云筆記產(chǎn)品中。微軟雅黑宋體以下是在有道云筆記中用于文檔識別的實(shí)踐過程。 這一兩年來,在移動端實(shí)現(xiàn)實(shí)時(shí)的人工智能已經(jīng)形成了一波潮流。去年,谷歌推出面向移動端和嵌入式的神經(jīng)網(wǎng)絡(luò)計(jì)算框架TensorFlowLite,將這股潮流繼續(xù)往前推。Tens...
閱讀 2209·2023-04-25 14:56
閱讀 2553·2021-11-16 11:44
閱讀 2749·2021-09-22 15:00
閱讀 1932·2019-08-29 16:55
閱讀 2211·2019-08-29 14:04
閱讀 2335·2019-08-29 11:23
閱讀 3715·2019-08-26 10:46
閱讀 1940·2019-08-22 18:43