單眼三維成像是依據(jù)多帶帶監(jiān)控攝像頭健身運(yùn)動仿真模擬雙目視覺獲得物件和空間里的三維視覺信息內(nèi)容,下面本文關(guān)鍵為大家介紹了對于如何依據(jù)python完成單眼三維成像的資料,原文中依據(jù)案例編碼推薦的十分詳盡,必須的小伙伴可以借鑒一下
一、單眼三維成像簡述
客觀現(xiàn)實的物件是三維立體的,而我用監(jiān)控攝像頭獲得的圖象是二維動畫的,但我們可以依據(jù)二維圖像認(rèn)知總體目標(biāo)三維信息內(nèi)容。三維重建技術(shù)要以相對應(yīng)的形式解決圖象從而獲得電子計算機(jī)可以識別三維立體信息內(nèi)容,從而對于目標(biāo)展開分析。而單眼三維成像乃是依據(jù)多帶帶監(jiān)控攝像頭健身運(yùn)動來仿真模擬雙目視覺,從而得到物件和空間里的三維視覺信息內(nèi)容,在其中,單眼是指多帶帶監(jiān)控攝像頭。
二、完成全過程
對其物件開展單眼三維成像的過程當(dāng)中,有關(guān)軟件環(huán)境如下所示:
matplotlib3.3.4
numpy1.19.5
opencv-contrib-python3.4.2.16
opencv-python3.4.2.16
pillow8.2.0
python3.6.2
其復(fù)建主要包括下列流程:
?。?)鏡頭的校準(zhǔn)
def camera_calibration(ImagePath): #循環(huán)中斷 criteria=(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,30,0.001) #棋盤格尺寸(棋盤格的交叉點的個數(shù)) row=11 column=8 objpoint=np.zeros((row*column,3),np.float32) objpoint[:,:2]=np.mgrid[0:row,0:column].T.reshape(-1,2) objpoints=[]#3d point in real world space imgpoints=[]#2d points in image plane. batch_images=glob.glob(ImagePath+'/*.jpg') for i,fname in enumerate(batch_images): img=cv2.imread(batch_images<i>) imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #find chess board corners ret,corners=cv2.findChessboardCorners(imgGray,(row,column),None) #if found,add object points,image points(after refining them) if ret: objpoints.append(objpoint) corners2=cv2.cornerSubPix(imgGray,corners,(11,11),(-1,-1),criteria) imgpoints.append(corners2) #Draw and display the corners img=cv2.drawChessboardCorners(img,(row,column),corners2,ret) cv2.imwrite('Checkerboard_Image/Temp_JPG/Temp_'+str(i)+'.jpg',img) print("成功提取:",len(batch_images),"張圖片角點!") ret,mtx,dist,rvecs,tvecs=cv2.calibrateCamera(objpoints,imgpoints,imgGray.shape[::-1],None,None)
(2)圖象圖像匹配及配對
def epipolar_geometric(Images_Path,K): IMG=glob.glob(Images_Path) img1,img2=cv2.imread(IMG[0]),cv2.imread(IMG[1]) img1_gray=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) img2_gray=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) #Initiate SURF detector SURF=cv2.xfeatures2d_SURF.create() #compute keypoint&descriptions keypoint1,descriptor1=SURF.detectAndCompute(img1_gray,None) keypoint2,descriptor2=SURF.detectAndCompute(img2_gray,None) print("角點數(shù)量:",len(keypoint1),len(keypoint2)) #Find point matches bf=cv2.BFMatcher(cv2.NORM_L2,crossCheck=True) matches=bf.match(descriptor1,descriptor2) print("匹配點數(shù)量:",len(matches)) src_pts=np.asarray([keypoint1[m.queryIdx].pt for m in matches]) dst_pts=np.asarray([keypoint2[m.trainIdx].pt for m in matches]) #plot knn_image=cv2.drawMatches(img1_gray,keypoint1,img2_gray,keypoint2,matches[:-1],None,flags=2) image_=Image.fromarray(np.uint8(knn_image)) image_.save("MatchesImage.jpg") #Constrain matches to fit homography retval,mask=cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,100.0) #We select only inlier points points1=src_pts[mask.ravel()==1] points2=dst_pts[mask.ravel()==1]
(3)三維成像
points1=cart2hom(points1.T) points2=cart2hom(points2.T) #plot fig,ax=plt.subplots(1,2) ax[0].autoscale_view('tight') ax[0].imshow(cv2.cvtColor(img1,cv2.COLOR_BGR2RGB)) ax[0].plot(points1[0],points1[1],'r.') ax[1].autoscale_view('tight') ax[1].imshow(cv2.cvtColor(img2,cv2.COLOR_BGR2RGB)) ax[1].plot(points2[0],points2[1],'r.') plt.savefig('MatchesPoints.jpg') fig.show() # points1n=np.dot(np.linalg.inv(K),points1) points2n=np.dot(np.linalg.inv(K),points2) E=compute_essential_normalized(points1n,points2n) print('Computed essential matrix:',(-E/E[0][1])) P1=np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0]]) P2s=compute_P_from_essential(E) ind=-1 for i,P2 in enumerate(P2s): #Find the correct camera parameters d1=reconstruct_one_point(points1n[:,0],points2n[:,0],P1,P2) #Convert P2 from camera view to world view P2_homogenous=np.linalg.inv(np.vstack([P2,[0,0,0,1]])) d2=np.dot(P2_homogenous[:3,:4],d1) if d1[2]>0 and d2[2]>0: ind=i P2=np.linalg.inv(np.vstack([P2s[ind],[0,0,0,1]]))[:3,:4] Points3D=linear_triangulation(points1n,points2n,P1,P2) fig=plt.figure() fig.suptitle('3D reconstructed',fontsize=16) ax=fig.gca(projection='3d') ax.plot(Points3D[0],Points3D[1],Points3D[2],'b.') ax.set_xlabel('x axis') ax.set_ylabel('y axis') ax.set_zlabel('z axis') ax.view_init(elev=135,azim=90) plt.savefig('Reconstruction.jpg') plt.show()
下面,我們一起來詳盡看看每個流程的實際完成:
?。?)鏡頭的校準(zhǔn)
在咱們在日常生活中有許多照相機(jī),如手機(jī)上面的照相機(jī)、數(shù)碼照相機(jī)及程序模塊型照相機(jī)這些,每個鏡頭的主要參數(shù)都是不一樣的,即照相機(jī)拍出來的手機(jī)照片屏幕分辨率、方式等。假定大家在開展物件三維成像時,事前并不了解大家鏡頭的引流矩陣主要參數(shù),那樣,大家就應(yīng)該算出鏡頭的引流矩陣主要參數(shù),這個流程就叫鏡頭的校準(zhǔn)。相機(jī)標(biāo)定的有關(guān)基本原理我不講了,在網(wǎng)上許多人講的挺詳盡的。其校準(zhǔn)的實際完成如下所示:
在其中,cv2.calibrateCamera函數(shù)公式求出來的mtx引流矩陣即是K引流矩陣。
當(dāng)改動好相對應(yīng)主要參數(shù)并進(jìn)行校準(zhǔn)后,我們能導(dǎo)出棋盤格的角點照片來看看是不是已正式獲取棋盤格的角點,導(dǎo)出角點圖如下所示:
圖1:棋盤格角點獲取
(2)圖象圖像匹配及配對
在所有三維成像的過程當(dāng)中,這步是相當(dāng)重要的,也是比較繁雜的一歩,照片圖像匹配的好與壞決定你最后復(fù)建實際效果。
在照片特征點獲取優(yōu)化算法中,主要有三種優(yōu)化算法比較常見,分別是:SIFT優(yōu)化算法、SURF優(yōu)化算法及其ORB優(yōu)化算法。依據(jù)全面分析比照,大家在這里一歩中選用SURF優(yōu)化算法的方式對圖形的特征點開展獲取。3種算法的特征點獲取實際效果比照如果你們有興趣能去網(wǎng)上搜索來看一下,在這個也不逐個考察了。實際完成如下所示:
圖2:特征點獲取
(3)三維成像
大家尋找圖形的特征點并彼此配對后,則可開始啟動三維成像了,實際完成如下所示:
圖3:三維成像
三、結(jié)果
從復(fù)建得到的結(jié)果來說,單眼三維成像實際效果通常,我覺得可能和這幾個方面有一定關(guān)系:
?。?)圖片拍攝方式。假如是開展單眼三維成像每日任務(wù),在拍攝圖片的時候最好維持平行移動照相機(jī),且最好是正面拍攝,即不必橫著拍或特殊視角照相;
?。?)拍攝的時候周圍環(huán)境影響。選擇拍的地址最好是維持單一化,降低不相干一個物體影響;
?。?)照相燈源難題。選擇的照相場所要確保適宜的色度(詳細(xì)情況要試才發(fā)現(xiàn)你的燈源是不是合格),另外就是挪動照相機(jī)的時候一定要確保上一時時刻刻和此階段的燈源統(tǒng)一性。
實際上,單眼三維成像效果的確通常,即使將各個方面情形都打滿,很有可能所得到的復(fù)建效果也是并不是很好?;蚴谴蠹铱梢赃x擇選用雙眼三維成像,雙眼三維成像實際效果肯定要比單目地比較好的,在推進(jìn)是可能就不便一(億)一點,嘿嘿。其實并沒有多不少實際操作,主要是整2個相機(jī)拍攝和校準(zhǔn)2個照相機(jī)不便點,其它的都不重要了。
四、編碼
此次試驗的所有編碼如下所示:
GitHub:https://github.com/DeepVegChicken/Learning-3DReconstruction
import cv2 import json import numpy as np import glob from PIL import Image import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False def cart2hom(arr): """Convert catesian to homogenous points by appending a row of 1s :param arr:array of shape(num_dimension x num_points) :returns:array of shape((num_dimension+1)x num_points) """ if arr.ndim==1: return np.hstack([arr,1]) return np.asarray(np.vstack([arr,np.ones(arr.shape[1])])) def compute_P_from_essential(E): """Compute the second camera matrix(assuming P1=[I 0]) from an essential matrix.E=[t]R :returns:list of 4 possible camera matrices. """ U,S,V=np.linalg.svd(E) #Ensure rotation matrix are right-handed with positive determinant if np.linalg.det(np.dot(U,V))<0: V=-V #create 4 possible camera matrices(Hartley p 258) W=np.array([[0,-1,0],[1,0,0],[0,0,1]]) P2s=[np.vstack((np.dot(U,np.dot(W,V)).T,U[:,2])).T, np.vstack((np.dot(U,np.dot(W,V)).T,-U[:,2])).T, np.vstack((np.dot(U,np.dot(W.T,V)).T,U[:,2])).T, np.vstack((np.dot(U,np.dot(W.T,V)).T,-U[:,2])).T] return P2s def correspondence_matrix(p1,p2): p1x,p1y=p1[:2] p2x,p2y=p2[:2] return np.array([ p1x*p2x,p1x*p2y,p1x, p1y*p2x,p1y*p2y,p1y, p2x,p2y,np.ones(len(p1x)) ]).T return np.array([ p2x*p1x,p2x*p1y,p2x, p2y*p1x,p2y*p1y,p2y, p1x,p1y,np.ones(len(p1x)) ]).T def scale_and_translate_points(points): """Scale and translate image points so that centroid of the points are at the origin and avg distance to the origin is equal to sqrt(2). :param points:array of homogenous point(3 x n) :returns:array of same input shape and its normalization matrix """ x=points[0] y=points[1] center=points.mean(axis=1)#mean of each row cx=x-center[0]#center the points cy=y-center[1] dist=np.sqrt(np.power(cx,2)+np.power(cy,2)) scale=np.sqrt(2)/dist.mean() norm3d=np.array([ [scale,0,-scale*center[0]], [0,scale,-scale*center[1]], [0,0,1] ]) return np.dot(norm3d,points),norm3d def compute_image_to_image_matrix(x1,x2,compute_essential=False): """Compute the fundamental or essential matrix from corresponding points (x1,x2 3*n arrays)using the 8 point algorithm. Each row in the A matrix below is constructed as [x'*x,x'*y,x',y'*x,y'*y,y',x,y,1] """ A=correspondence_matrix(x1,x2) #compute linear least square solution U,S,V=np.linalg.svd(A) F=V[-1].reshape(3,3) #constrain F.Make rank 2 by zeroing out last singular value U,S,V=np.linalg.svd(F) S[-1]=0 if compute_essential: S=[1,1,0]#Force rank 2 and equal eigenvalues F=np.dot(U,np.dot(np.diag(S),V)) return F def compute_normalized_image_to_image_matrix(p1,p2,compute_essential=False): """Computes the fundamental or essential matrix from corresponding points using the normalized 8 point algorithm. :input p1,p2:corresponding points with shape 3 x n :returns:fundamental or essential matrix with shape 3 x 3 """ n=p1.shape[1] if p2.shape[1]!=n: raise ValueError('Number of points do not match.') #preprocess image coordinates p1n,T1=scale_and_translate_points(p1) p2n,T2=scale_and_translate_points(p2) #compute F or E with the coordinates F=compute_image_to_image_matrix(p1n,p2n,compute_essential) #reverse preprocessing of coordinates #We know that P1'E P2=0 F=np.dot(T1.T,np.dot(F,T2)) return F/F[2,2] def compute_fundamental_normalized(p1,p2): return compute_normalized_image_to_image_matrix(p1,p2) def compute_essential_normalized(p1,p2): return compute_normalized_image_to_image_matrix(p1,p2,compute_essential=True) def skew(x): """Create a skew symmetric matrix*A*from a 3d vector*x*. Property:np.cross(A,v)==np.dot(x,v) :param x:3d vector :returns:3 x 3 skew symmetric matrix from*x* """ return np.array([ [0,-x[2],x[1]], [x[2],0,-x[0]], [-x[1],x[0],0] ]) def reconstruct_one_point(pt1,pt2,m1,m2): """ pt1 and m1*X are parallel and cross product=0 pt1 x m1*X=pt2 x m2*X=0 """ A=np.vstack([ np.dot(skew(pt1),m1), np.dot(skew(pt2),m2) ]) U,S,V=np.linalg.svd(A) P=np.ravel(V[-1,:4]) return P/P[3] def linear_triangulation(p1,p2,m1,m2): """ Linear triangulation(Hartley ch 12.2 pg 312)to find the 3D point X where p1=m1*X and p2=m2*X.Solve AX=0. :param p1,p2:2D points in homo.or catesian coordinates.Shape(3 x n) :param m1,m2:Camera matrices associated with p1 and p2.Shape(3 x 4) :returns:4 x n homogenous 3d triangulated points """ num_points=p1.shape[1] res=np.ones((4,num_points)) for i in range(num_points): A=np.asarray([ (p1[0,i]*m1[2,:]-m1[0,:]), (p1[1,i]*m1[2,:]-m1[1,:]), (p2[0,i]*m2[2,:]-m2[0,:]), (p2[1,i]*m2[2,:]-m2[1,:]) ]) _,_,V=np.linalg.svd(A) X=V[-1,:4] res[:,i]=X/X[3] return res def writetofile(dict,path): for index,item in enumerate(dict): dict[item]=np.array(dict[item]) dict[item]=dict[item].tolist() js=json.dumps(dict) with open(path,'w')as f: f.write(js) print("參數(shù)已成功保存到文件") def readfromfile(path): with open(path,'r')as f: js=f.read() mydict=json.loads(js) print("參數(shù)讀取成功") return mydict def camera_calibration(SaveParamPath,ImagePath): #循環(huán)中斷 criteria=(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,30,0.001) #棋盤格尺寸 row=11 column=8 objpoint=np.zeros((row*column,3),np.float32) objpoint[:,:2]=np.mgrid[0:row,0:column].T.reshape(-1,2) objpoints=[]#3d point in real world space imgpoints=[]#2d points in image plane. batch_images=glob.glob(ImagePath+'/*.jpg') for i,fname in enumerate(batch_images): img=cv2.imread(batch_images<i>) imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #find chess board corners ret,corners=cv2.findChessboardCorners(imgGray,(row,column),None) #if found,add object points,image points(after refining them) if ret: objpoints.append(objpoint) corners2=cv2.cornerSubPix(imgGray,corners,(11,11),(-1,-1),criteria) imgpoints.append(corners2) #Draw and display the corners img=cv2.drawChessboardCorners(img,(row,column),corners2,ret) cv2.imwrite('Checkerboard_Image/Temp_JPG/Temp_'+str(i)+'.jpg',img) print("成功提取:",len(batch_images),"張圖片角點!") ret,mtx,dist,rvecs,tvecs=cv2.calibrateCamera(objpoints,imgpoints,imgGray.shape[::-1],None,None) dict={'ret':ret,'mtx':mtx,'dist':dist,'rvecs':rvecs,'tvecs':tvecs} writetofile(dict,SaveParamPath) meanError=0 for i in range(len(objpoints)): imgpoints2,_=cv2.projectPoints(objpoints<i>,rvecs<i>,tvecs<i>,mtx,dist) error=cv2.norm(imgpoints<i>,imgpoints2,cv2.NORM_L2)/len(imgpoints2) meanError+=error print("total error:",meanError/len(objpoints)) def epipolar_geometric(Images_Path,K): IMG=glob.glob(Images_Path) img1,img2=cv2.imread(IMG[0]),cv2.imread(IMG[1]) img1_gray=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) img2_gray=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) #Initiate SURF detector SURF=cv2.xfeatures2d_SURF.create() #compute keypoint&descriptions keypoint1,descriptor1=SURF.detectAndCompute(img1_gray,None) keypoint2,descriptor2=SURF.detectAndCompute(img2_gray,None) print("角點數(shù)量:",len(keypoint1),len(keypoint2)) #Find point matches bf=cv2.BFMatcher(cv2.NORM_L2,crossCheck=True) matches=bf.match(descriptor1,descriptor2) print("匹配點數(shù)量:",len(matches)) src_pts=np.asarray([keypoint1[m.queryIdx].pt for m in matches]) dst_pts=np.asarray([keypoint2[m.trainIdx].pt for m in matches]) #plot knn_image=cv2.drawMatches(img1_gray,keypoint1,img2_gray,keypoint2,matches[:-1],None,flags=2) image_=Image.fromarray(np.uint8(knn_image)) image_.save("MatchesImage.jpg") #Constrain matches to fit homography retval,mask=cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,100.0) #We select only inlier points points1=src_pts[mask.ravel()==1] points2=dst_pts[mask.ravel()==1] points1=cart2hom(points1.T) points2=cart2hom(points2.T) #plot fig,ax=plt.subplots(1,2) ax[0].autoscale_view('tight') ax[0].imshow(cv2.cvtColor(img1,cv2.COLOR_BGR2RGB)) ax[0].plot(points1[0],points1[1],'r.') ax[1].autoscale_view('tight') ax[1].imshow(cv2.cvtColor(img2,cv2.COLOR_BGR2RGB)) ax[1].plot(points2[0],points2[1],'r.') plt.savefig('MatchesPoints.jpg') fig.show() # points1n=np.dot(np.linalg.inv(K),points1) points2n=np.dot(np.linalg.inv(K),points2) E=compute_essential_normalized(points1n,points2n) print('Computed essential matrix:',(-E/E[0][1])) P1=np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0]]) P2s=compute_P_from_essential(E) ind=-1 for i,P2 in enumerate(P2s): #Find the correct camera parameters d1=reconstruct_one_point(points1n[:,0],points2n[:,0],P1,P2) #Convert P2 from camera view to world view P2_homogenous=np.linalg.inv(np.vstack([P2,[0,0,0,1]])) d2=np.dot(P2_homogenous[:3,:4],d1) if d1[2]>0 and d2[2]>0: ind=i P2=np.linalg.inv(np.vstack([P2s[ind],[0,0,0,1]]))[:3,:4] Points3D=linear_triangulation(points1n,points2n,P1,P2) return Points3D def main(): CameraParam_Path='CameraParam.txt' CheckerboardImage_Path='Checkerboard_Image' Images_Path='SubstitutionCalibration_Image/*.jpg' #計算相機(jī)參數(shù) camera_calibration(CameraParam_Path,CheckerboardImage_Path) #讀取相機(jī)參數(shù) config=readfromfile(CameraParam_Path) K=np.array(config['mtx']) #計算3D點 Points3D=epipolar_geometric(Images_Path,K) #重建3D點 fig=plt.figure() fig.suptitle('3D reconstructed',fontsize=16) ax=fig.gca(projection='3d') ax.plot(Points3D[0],Points3D[1],Points3D[2],'b.') ax.set_xlabel('x axis') ax.set_ylabel('y axis') ax.set_zlabel('z axis') ax.view_init(elev=135,azim=90) plt.savefig('Reconstruction.jpg') plt.show() if __name__=='__main__': main()
綜上所述,這篇文章就給大家介紹到這里了,希望可以給大家?guī)韼椭?/p>
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/130254.html
摘要:兩條平行的直線在無窮遠(yuǎn)的地方看起來會匯集到一起,而匯集的點,在透視里稱作消失點。小孔成像三維空間的火焰,透過小孔,在二維成像屏上顯示了二維的畫面。 前言 不好意思,標(biāo)題其實是開了個玩笑。大家都知道,Canvas 獲取繪畫上下文的 api 是 getContext(2d)。我第一次看到這個 api 定義的時候,就很自然的認(rèn)為,既然有 2d 那一定是有 3d 的咯? 但是我接著我看到了 a...
??歡迎訂閱《從實戰(zhàn)學(xué)python》專欄,用python實現(xiàn)爬蟲、辦公自動化、數(shù)據(jù)可視化、人工智能等各個方向的實戰(zhàn)案例,有趣又有用!?? 更多精品專欄簡介點這里 治愈生活的良方 就是保持對生活的熱愛 前言 哈嘍,大家好,我是一條。 每次和女朋友出去玩,拍照是必須的,天氣好還行,天氣要是不好,加上我這破手機(jī),那拍的簡直慘不忍睹,自己都不過去。 但是沒什么能難倒程序員的,為了不挨罵,連夜寫出去霧...
contour和contourf全是畫三維立體等高線圖的,接下來本文主要是為大家介紹了關(guān)于python做圖基本操作之plt.contour的相關(guān)信息,原文中依據(jù)案例編碼推薦的十分詳盡,需用的小伙伴可以參考一下 序言 plt.contour是python中用以畫等值線的函數(shù)公式,這兒簡單的介紹plt.contour的應(yīng)用?! ?yīng)用示例 importnumpyasnp importmat...
摘要:在文末,我會附上一個可加載的模型方便學(xué)習(xí)中文藝術(shù)字渲染用原生可以很容易地繪制文字,但是原生提供的文字效果美化功能十分有限。 showImg(https://segmentfault.com/img/bVWYnb?w=900&h=385); WebGL 可以說是 HTML5 技術(shù)生態(tài)鏈中最為令人振奮的標(biāo)準(zhǔn)之一,它把 Web 帶入了 3D 的時代。 初識 WebGL 先通過幾個使用 Web...
閱讀 892·2023-01-14 11:38
閱讀 837·2023-01-14 11:04
閱讀 688·2023-01-14 10:48
閱讀 1892·2023-01-14 10:34
閱讀 895·2023-01-14 10:24
閱讀 753·2023-01-14 10:18
閱讀 482·2023-01-14 10:09
閱讀 522·2023-01-14 10:02