背景介紹
數(shù)據(jù)庫查詢性能是評價(jià)數(shù)據(jù)庫的核心指標(biāo),隨著現(xiàn)代服務(wù)器的資源配置越來越強(qiáng)大,為充分發(fā)揮硬件性能提升數(shù)據(jù)庫查詢性能,可以通過把操作分解成多個(gè)并行執(zhí)行來實(shí)現(xiàn)。
什么是并行查詢?
如何使用并行查詢?
在測試的版本(Version 12.1)中,數(shù)據(jù)庫默認(rèn)啟用了2路并行。
max_worker_processes:數(shù)據(jù)庫支持的最大后臺進(jìn)程數(shù),默認(rèn)值為8。
max_parallel_workers:數(shù)據(jù)庫支持的最大并行查詢數(shù),實(shí)際分配的數(shù)量受上面的max_worker_processes參數(shù)限制,默認(rèn)值為8。
max_parallel_workers_per_gather:目前可以啟動(dòng)的并行數(shù),實(shí)際分配的數(shù)量受上面的max_parallel_workers參數(shù)限制,max_parallel_workers_per_gather默認(rèn)值為2。
worker進(jìn)程數(shù)量越多,查詢性能越高嗎?
怎么看到并行的任務(wù)?
系統(tǒng)中有以下進(jìn)程,第1個(gè)是leader進(jìn)程,2個(gè)worker進(jìn)程:
postgres 3279 2158 2 01:59 ? 00:04:51 postgres: postgres music [local] SELECT
postgres 12501 2158 93 04:47 ? 00:00:02 postgres: parallel worker for PID 3279
postgres 12502 2158 93 04:47 ? 00:00:02 postgres: parallel worker for PID 3279
top中也可以抓的到進(jìn)程的性能數(shù)據(jù):
top - 04:51:16 up 6:24, 2 users, load average: 0.10, 0.06, 0.10
Tasks: 147 total, 4 running, 143 sleeping, 0 stopped, 0 zombie
%Cpu(s): 46.0 us, 6.5 sy, 0.0 ni, 47.4 id, 0.0 wa, 0.0 hi, 0.1 si, 0.0 st
KiB Mem : 14.0/3861364 [|||||||||||||| ]
KiB Swap: 20.1/2097148 [|||||||||||||||||||| ]
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3279 postgres 20 0 404368 144000 140976 R 71.4 3.7 5:00.69 postgres: postgres music [local] SELECT
12693 postgres 20 0 400824 6056 4608 R 71.4 0.2 0:02.15 postgres: parallel worker for PID 3279
12694 postgres 20 0 400824 6056 4608 R 70.8 0.2 0:02.13 postgres: parallel worker for PID 3279
能否看到更詳細(xì)的執(zhí)行情況?
首先將并行度提升到6路:
music=# set max_parallel_workers_per_gather = 6;
SET
看一下實(shí)際的執(zhí)行計(jì)劃
music=# EXPLAIN (ANALYZE,VERBOSE) SELECT * FROM rock WHERE name = Bon_Jovi;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------
Gather (cost=1000.00..471830.76 rows=1 width=25) (actual time=0.270..2811.900 rows=1 loops=1)
Output: id, name, create_time
Workers Planned: 6
Workers Launched: 6
-> Parallel Seq Scan on public.rock (cost=0.00..470830.66 rows=1 width=25) (actual time=2374.703..2775.358 rows=0 loops=7)
Output: id, name, create_time
Filter: ((rock.name)::text = Bon_Jovi::text)
Rows Removed by Filter: 7142857
Worker 0: actual time=2756.906..2756.906 rows=0 loops=1
Worker 1: actual time=2765.581..2765.581 rows=0 loops=1
Worker 2: actual time=2769.584..2769.584 rows=0 loops=1
Worker 3: actual time=2778.855..2778.855 rows=0 loops=1
Worker 4: actual time=2752.952..2752.952 rows=0 loops=1
Worker 5: actual time=2799.014..2799.014 rows=0 loops=1
Planning Time: 0.048 ms
Execution Time: 2811.918 ms
設(shè)置了并行就會(huì)啟動(dòng)并行查詢?
music=# EXPLAIN SELECT * FROM rock WHERE id = 1;
QUERY PLAN
---------------------------------------------------------------------------------------
Index Scan using idx_rock_id on rock (cost=0.56..8.58 rows=1 width=25)
Index Cond: (id = 1)
(2 rows)
music=# EXPLAIN (ANALYZE,VERBOSE) SELECT * FROM rock WHERE id = 1;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_rock_id on public.rock (cost=0.56..8.58 rows=1 width=25) (actual time=0.087..0.088 rows=1 loops=1)
Output: id, name, create_time
Index Cond: (rock.id = 1)
Planning Time: 0.079 ms
Execution Time: 0.111 ms
(5 rows)
采用了索引掃描,由于cost的值比較低,盡管有設(shè)置并發(fā),但是cost未觸發(fā)到并發(fā)所需的條件,所以說不會(huì)啟用并發(fā)。也有可能因?yàn)樵u估不需要那么多的并發(fā)而啟動(dòng)一部分?jǐn)?shù)量的worker(后文有演示)
觸發(fā)并發(fā)的條件有以下兩個(gè),當(dāng)以查詢的代價(jià)觸發(fā)到以下兩個(gè)參數(shù)的值時(shí),才會(huì)觸發(fā)并行:
parallel_setup_cost = 1000
parallel_tuple_cost = 0.1
在本次查詢中,索引掃描的cost值總體才到8.58,因此未觸發(fā)并行機(jī)制。
同樣,在bitmap等查詢場景中,成本達(dá)不到cost值觸發(fā)條件的話,均不會(huì)啟動(dòng)并發(fā)查詢,如:
在筆者使用體驗(yàn)過程中,發(fā)現(xiàn)也有并發(fā)度按需分配的情況:
music=# set max_parallel_workers_per_gather = 6;
SET
music=# EXPLAIN ANALYSE SELECT * FROM rock WHERE id = 1 OR id = 2;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on rock (cost=9.15..17.16 rows=2 width=25) (actual time=0.019..0.020 rows=2 loops=1)
Recheck Cond: ((id = 1) OR (id = 2))
Heap Blocks: exact=1
-> BitmapOr (cost=9.15..9.15 rows=2 width=0) (actual time=0.015..0.015 rows=0 loops=1)
-> Bitmap Index Scan on idx_rock_id (cost=0.00..4.57 rows=1 width=0) (actual time=0.013..0.013 rows=1 loops=1)
Index Cond: (id = 1)
-> Bitmap Index Scan on idx_rock_id (cost=0.00..4.57 rows=1 width=0) (actual time=0.002..0.002 rows=1 loops=1)
Index Cond: (id = 2)
Planning Time: 0.059 ms
Execution Time: 0.040 ms
(10 rows)
索引并行掃描的場景觸發(fā)并行的情況可以看一下以下案例:
music=# EXPLAIN (ANALYZE,VERBOSE) SELECT count(*) FROM rock WHERE id < 10000000;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------
Finalize Aggregate (cost=279145.34..279145.35 rows=1 width=8) (actual time=3482.259..3482.259 rows=1 loops=1)
Output: count(*)
-> Gather (cost=279144.71..279145.32 rows=6 width=8) (actual time=3453.374..3487.724 rows=7 loops=1)
Output: (PARTIAL count(*))
Workers Planned: 6
Workers Launched: 6
-> Partial Aggregate (cost=278144.71..278144.72 rows=1 width=8) (actual time=3436.943..3436.943 rows=1 loops=7)
Output: PARTIAL count(*)
Worker 0: actual time=3427.536..3427.536 rows=1 loops=1
Worker 1: actual time=3440.951..3440.951 rows=1 loops=1
Worker 2: actual time=3433.833..3433.833 rows=1 loops=1
Worker 3: actual time=3438.579..3438.579 rows=1 loops=1
Worker 4: actual time=3438.378..3438.379 rows=1 loops=1
Worker 5: actual time=3426.513..3426.513 rows=1 loops=1
-> Parallel Index Only Scan using idx_rock_id on public.rock (cost=0.56..273988.62 rows=1662437 width=0) (
actual time=2.701..3281.001 rows=1428571 loops=7)
Output: id
Index Cond: (rock.id < 10000000)
Heap Fetches: 9999999
Worker 0: actual time=0.605..3271.022 rows=1466562 loops=1
Worker 1: actual time=0.170..3286.350 rows=1449726 loops=1
Worker 2: actual time=0.424..3291.647 rows=1301496 loops=1
Worker 3: actual time=3.191..3258.715 rows=1658712 loops=1
Worker 4: actual time=12.856..3273.552 rows=1509750 loops=1
Worker 5: actual time=1.608..3284.193 rows=1294323 loops=1
Planning Time: 2.203 ms
Execution Time: 3488.023 ms
(26 rows)
從下往上看分別進(jìn)行了:并行索引掃描---并行聚合---最終聚合
首先啟動(dòng)了6個(gè)worker進(jìn)程進(jìn)行了索引條件掃描,在數(shù)據(jù)庫估算開銷時(shí)認(rèn)為每一個(gè)worker的掃描成本都高于1000,因此觸發(fā)了并發(fā)。當(dāng)每一個(gè)worker將數(shù)據(jù)掃描后,進(jìn)行分別處理后,最終給gather匯總整合輸出。
執(zhí)行過程可參考下圖:
設(shè)置了并行參數(shù)后,一定會(huì)啟動(dòng)并行嗎?
一定會(huì)啟動(dòng)設(shè)定的并行度嗎?
music=# show max_parallel_workers_per_gather;
max_parallel_workers_per_gather
---------------------------------
6
(1 row)
music=# EXPLAIN (ANALYZE,VERBOSE) SELECT pop.name FROM rock,pop WHERE rock.id = pop.id AND pop.id < 10000;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
-------------------
Gather (cost=1000.57..174222.54 rows=18002 width=13) (actual time=5.881..3276.311 rows=19998 loops=1)
Output: pop.name
Workers Planned: 5
Workers Launched: 5
-> Nested Loop (cost=0.56..171422.34 rows=3600 width=13) (actual time=3.189..3258.998 rows=3333 loops=6)
Output: pop.name
Worker 0: actual time=2.591..3259.895 rows=1850 loops=1
Worker 1: actual time=0.180..3251.631 rows=4081 loops=1
Worker 2: actual time=1.344..3261.433 rows=555 loops=1
Worker 3: actual time=8.603..3262.411 rows=3330 loops=1
Worker 4: actual time=0.821..3259.297 rows=4623 loops=1
-> Parallel Seq Scan on public.pop (cost=0.00..141721.20 rows=3600 width=17) (actual time=1.020..3223.285 rows=3333 loops
=6)
Output: pop.id, pop.name
Filter: (pop.id < 10000)
Rows Removed by Filter: 2663334
Worker 0: actual time=0.054..3237.921 rows=1850 loops=1
Worker 1: actual time=0.049..3215.862 rows=4081 loops=1
Worker 2: actual time=0.102..3236.592 rows=555 loops=1
Worker 3: actual time=0.296..3235.327 rows=3330 loops=1
Worker 4: actual time=0.055..3188.732 rows=4623 loops=1
-> Index Only Scan using idx_rock_id on public.rock (cost=0.56..8.24 rows=1 width=4) (actual time=0.008..0.010 r
ows=1 loops=19998)
Output: rock.id
Index Cond: (rock.id = pop.id)
Heap Fetches: 19998
Worker 0: actual time=0.011..0.011 rows=1 loops=1850
Worker 1: actual time=0.008..0.008 rows=1 loops=4081
Worker 2: actual time=0.044..0.044 rows=1 loops=555
Worker 3: actual time=0.007..0.007 rows=1 loops=3330
Worker 4: actual time=0.006..0.015 rows=1 loops=4623
Planning Time: 0.579 ms
Execution Time: 3277.727 ms
(31 rows)
以上語句在實(shí)際工作中一般需要添加以下索引,提高一下查詢速度,當(dāng)添加玩索引之后,發(fā)現(xiàn)查詢的代價(jià)下降的很少,以至于不需要觸發(fā)那么多并發(fā)進(jìn)程了:
music=# CREATE INDEX idx_pop_id ON pop(id);
WARNING: concurrent insert in progress within table "b"
CREATE INDEX
music=# set max_parallel_workers_per_gather = 6;
SET
music=# EXPLAIN (ANALYZE,VERBOSE) SELECT pop.name FROM rock,pop WHERE rock.id = pop.id AND pop.id < 10000;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
-------------------
Gather (cost=1388.64..108804.88 rows=20599 width=13) (actual time=1.316..35.770 rows=19998 loops=1)
Output: pop.name
Workers Planned: 3
Workers Launched: 3
-> Nested Loop (cost=388.64..105744.98 rows=6645 width=13) (actual time=0.341..27.475 rows=5000 loops=4)
Output: pop.name
Worker 0: actual time=0.095..26.337 rows=5365 loops=1
Worker 1: actual time=0.091..26.641 rows=5753 loops=1
Worker 2: actual time=0.101..28.578 rows=3145 loops=1
-> Parallel Bitmap Heap Scan on public.pop (cost=388.08..51229.82 rows=6645 width=17) (actual time=0.298..1.265 rows=5000 loops=4)
Output: pop.id, pop.name
Recheck Cond: (pop.id < 10000)
Heap Blocks: exact=31
Worker 0: actual time=0.044..1.111 rows=5365 loops=1
Worker 1: actual time=0.044..1.205 rows=5753 loops=1
Worker 2: actual time=0.049..0.681 rows=3145 loops=1
-> Bitmap Index Scan on idx_pop_id (cost=0.00..382.93 rows=20599 width=0) (actual time=1.012..1.012 rows=19998 loops=1)
Index Cond: (pop.id < 10000)
-> Index Only Scan using idx_rock_id on public.rock (cost=0.56..8.19 rows=1 width=4) (actual time=0.004..0.004 rows=1 loops=19998)
Output: rock.id
Index Cond: (rock.id = pop.id)
Heap Fetches: 19998
Worker 0: actual time=0.004..0.004 rows=1 loops=5365
Worker 1: actual time=0.003..0.004 rows=1 loops=5753
Worker 2: actual time=0.004..0.004 rows=1 loops=3145
Planning Time: 0.264 ms
Execution Time: 37.025 ms
(27 rows)
總結(jié)
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/129987.html
摘要:一關(guān)于參數(shù)這個(gè)參數(shù)配置決定了每個(gè)并行操作允許的最大后臺進(jìn)程數(shù),這個(gè)值的設(shè)置受后臺進(jìn)程數(shù)參數(shù)限制。查看并行順序掃描進(jìn)程備注圖中可看到出現(xiàn)了四個(gè)進(jìn)程。三測試測試之前先把的數(shù)據(jù)庫關(guān)了,在確保相等情況下進(jìn)行測試。 Oracle 支持強(qiáng)大的并行功能,創(chuàng)建索引,表分析,數(shù)據(jù)加載時(shí)可以開啟并行,這項(xiàng)功能讓很多數(shù)據(jù)庫產(chǎn)品垂涎, 作為開源數(shù)據(jù)庫 PostgreSQL 在并行方面也在努力嘗試,很早之前 P...
摘要:作者譚峰張文升出版日期年月頁數(shù)頁定價(jià)元本書特色中國開源軟件推進(jìn)聯(lián)盟分會(huì)特聘專家撰寫,國內(nèi)多位開源數(shù)據(jù)庫專家鼎力推薦。張文升中國開源軟件推進(jìn)聯(lián)盟分會(huì)核心成員之一。 很高興《PostgreSQL實(shí)戰(zhàn)》一書終于出版,本書大體上系統(tǒng)總結(jié)了筆者 PostgreSQL DBA 職業(yè)生涯的經(jīng)驗(yàn)總結(jié),本書的另一位作者張文升擁有豐富的PostgreSQL運(yùn)維經(jīng)驗(yàn),目前就職于探探科技任首席PostgreS...
摘要:這可以通過負(fù)載平衡來實(shí)現(xiàn)數(shù)據(jù)分片當(dāng)問題不是并發(fā)查詢的數(shù)量,而是數(shù)據(jù)庫的大小和單個(gè)查詢的速度時(shí),可以實(shí)現(xiàn)不同的方法。 showImg(https://segmentfault.com/img/remote/1460000018875091); 來源 | 愿碼(ChainDesk.CN)內(nèi)容編輯 愿碼Slogan | 連接每個(gè)程序員的故事 網(wǎng)站 | http://chaindesk.cn...
摘要:這可以通過負(fù)載平衡來實(shí)現(xiàn)數(shù)據(jù)分片當(dāng)問題不是并發(fā)查詢的數(shù)量,而是數(shù)據(jù)庫的大小和單個(gè)查詢的速度時(shí),可以實(shí)現(xiàn)不同的方法。 showImg(https://segmentfault.com/img/remote/1460000018875091); 來源 | 愿碼(ChainDesk.CN)內(nèi)容編輯 愿碼Slogan | 連接每個(gè)程序員的故事 網(wǎng)站 | http://chaindesk.cn...
摘要:云計(jì)算云計(jì)算的基本原則是采用一次性和可更換的多臺機(jī)器,這對采用云計(jì)算技術(shù)以及在云中實(shí)施的數(shù)據(jù)庫系統(tǒng)的功能有直接影響。云數(shù)據(jù)庫屬于相同的類別,而新系統(tǒng)明顯傾向于并行優(yōu)先。與非云系統(tǒng)相比,云計(jì)算系統(tǒng)向數(shù)據(jù)庫應(yīng)用程序公開資源利用控制要常見得多。 云計(jì)算的基本原則是采用一次性和可更換的多臺機(jī)器,這對采用云計(jì)算技術(shù)以及在云中實(shí)施的數(shù)據(jù)庫系統(tǒng)的功能有直接影響。傳統(tǒng)數(shù)據(jù)庫大致可以分為并行優(yōu)先(例如Mo...
閱讀 1356·2023-01-11 13:20
閱讀 1707·2023-01-11 13:20
閱讀 1215·2023-01-11 13:20
閱讀 1906·2023-01-11 13:20
閱讀 4165·2023-01-11 13:20
閱讀 2757·2023-01-11 13:20
閱讀 1402·2023-01-11 13:20
閱讀 3671·2023-01-11 13:20