轉(zhuǎn)換操作
UpdateStateByKey 操作
def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
val newCount = ... // add the new values with the previous running count to get the new count
Some(newCount)}
val runningCounts = pairs.updateStateByKey[Int](updateFunction _)
Transform 操作
窗口操作
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/129614.html
摘要:但在企業(yè)中存在很多實(shí)時(shí)性處理的需求,例如雙十一的京東阿里,通常會(huì)做一個(gè)實(shí)時(shí)的數(shù)據(jù)大屏,顯示實(shí)時(shí)訂單。這種情況下,對(duì)數(shù)據(jù)實(shí)時(shí)性要求較高,僅僅能夠容忍到延遲分鐘或幾秒鐘。1 Spark Streaming是什么它是一個(gè)可擴(kuò)展,高吞吐具有容錯(cuò)性的流式計(jì)算框架吞吐量:?jiǎn)挝粫r(shí)間內(nèi)成功傳輸數(shù)據(jù)的數(shù)量之前我們接觸的spark-core和spark-sql都是處理屬于離線批處理任務(wù),數(shù)據(jù)一般都是在固定位置上...
摘要:輸入和接收器輸入代表從某種流式數(shù)據(jù)源流入的數(shù)據(jù)流。文件數(shù)據(jù)流可以從任何兼容包括等的文件系統(tǒng),創(chuàng)建方式如下將監(jiān)視該目錄,并處理該目錄下任何新建的文件目前還不支持嵌套目錄。會(huì)被一個(gè)個(gè)依次推入隊(duì)列,而則會(huì)依次以數(shù)據(jù)流形式處理這些的數(shù)據(jù)。 特點(diǎn): Spark Streaming能夠?qū)崿F(xiàn)對(duì)實(shí)時(shí)數(shù)據(jù)流的流式處理,并具有很好的可擴(kuò)展性、高吞吐量和容錯(cuò)性。 Spark Streaming支持從多種數(shù)...
摘要:同時(shí)集成了機(jī)器學(xué)習(xí)類庫。基于計(jì)算框架,將的分布式計(jì)算應(yīng)用到機(jī)器學(xué)習(xí)領(lǐng)域。提供了一個(gè)簡(jiǎn)單的聲明方法指定機(jī)器學(xué)習(xí)任務(wù),并且動(dòng)態(tài)地選擇最優(yōu)的學(xué)習(xí)算法。宣稱其性能是的多倍。 介紹 spark是分布式并行數(shù)據(jù)處理框架 與mapreduce的區(qū)別: mapreduce通常將中間結(jié)果放在hdfs上,spark是基于內(nèi)存并行大數(shù)據(jù)框架,中間結(jié)果放在內(nèi)存,對(duì)于迭代數(shù)據(jù)spark效率更高,mapred...
閱讀 1357·2023-01-11 13:20
閱讀 1707·2023-01-11 13:20
閱讀 1215·2023-01-11 13:20
閱讀 1906·2023-01-11 13:20
閱讀 4165·2023-01-11 13:20
閱讀 2757·2023-01-11 13:20
閱讀 1402·2023-01-11 13:20
閱讀 3672·2023-01-11 13:20