小編寫這篇文章的主要目的是,教給大家怎么使用哈夫曼編碼,也就是霍夫曼編碼,并把具體的一些代碼實例給大家貼了出來,希望可以為大家?guī)韼椭?/p>
一、用C語言實現(xiàn)哈夫曼編碼
1、代碼解釋
?。?)建立一個互相連接的表
我們在創(chuàng)建哈夫曼樹的過程之中,要對互相之間的連接點進行增刪查改,所以使用雙向鏈路表格會更加的容易。
'''C #include <stdlib.h> #include <stdio.h> #include <windows.h> //哈夫曼樹結(jié)構(gòu)體,數(shù)據(jù)域存儲字符及其權(quán)重 typedef struct node { char c; int weight; struct node *lchild, *rchild; }Huffman, *Tree; //雙向鏈表結(jié)構(gòu)體,數(shù)據(jù)域存儲哈夫曼樹結(jié)點 typedef struct list { Tree root; struct list *pre; struct list *next; }List, *pList; //創(chuàng)建雙向鏈表,返回頭結(jié)點指針 pList creatList() { pList head = (pList)malloc(sizeof(List)); pList temp1 = head; pList temp2 = (pList)malloc(sizeof(List)); temp1->pre = NULL; temp1->next = temp2; temp1->root = (Tree)malloc(sizeof(Huffman)); temp1->root->c = 'a'; temp1->root->weight = 22; temp1->root->lchild = NULL; temp1->root->rchild = NULL; temp2->pre = temp1; temp1 = temp2; temp2 = (pList)malloc(sizeof(List)); temp1->next = temp2; temp1->root = (Tree)malloc(sizeof(Huffman)); temp1->root->c = 'b'; temp1->root->weight = 5; temp1->root->lchild = NULL; temp1->root->rchild = NULL; temp2->pre = temp1; temp1 = temp2; temp2 = (pList)malloc(sizeof(List)); temp1->next = temp2; temp1->root = (Tree)malloc(sizeof(Huffman)); temp1->root->c = 'c'; temp1->root->weight = 38; temp1->root->lchild = NULL; temp1->root->rchild = NULL; temp2->pre = temp1; temp1 = temp2; temp2 = (pList)malloc(sizeof(List)); temp1->next = temp2; temp1->root = (Tree)malloc(sizeof(Huffman)); temp1->root->c = 'd'; temp1->root->weight = 9; temp1->root->lchild = NULL; temp1->root->rchild = NULL; temp2->pre = temp1; temp1 = temp2; temp2 = (pList)malloc(sizeof(List)); temp1->next = temp2; temp1->root = (Tree)malloc(sizeof(Huffman)); temp1->root->c = 'e'; temp1->root->weight = 44; temp1->root->lchild = NULL; temp1->root->rchild = NULL; temp2->pre = temp1; temp1 = temp2; temp2 = (pList)malloc(sizeof(List)); temp1->next = temp2; temp1->root = (Tree)malloc(sizeof(Huffman)); temp1->root->c = 'f'; temp1->root->weight = 12; temp1->root->lchild = NULL; temp1->root->rchild = NULL; temp2->pre = temp1; temp1 = temp2; temp1->next = NULL; temp1->root = (Tree)malloc(sizeof(Huffman)); temp1->root->c = 'g'; temp1->root->weight = 65; temp1->root->lchild = NULL; temp1->root->rchild = NULL; return head; }
?。?)建立起棧的結(jié)構(gòu)
解碼過程需要用到兩個棧,一個用來存放樹結(jié)點,一個用來存放碼0和1
'''C #define STACK_INIT_SIZE 100 //棧初始開辟空間大小 #define STACK_INCREMENT 10 //棧追加空間大小 //字符棧結(jié)構(gòu)體,存放編碼'0'和'1' typedef struct { char *base; char *top; int size; }charStack; //棧初始化 charStack charStackInit() { charStack s; s.base = (char *)malloc(sizeof(char)*STACK_INIT_SIZE); s.top = s.base; s.size = STACK_INIT_SIZE; return s; } //入棧 void charPush(charStack *s, char e) { if(s->top - s->base >= s->size) { s->size += STACK_INCREMENT; s->base = realloc(s->base, sizeof(char)*s->size); } *s->top = e; s->top++; } //出棧 char charPop(charStack *s) { if(s->top != s->base) { s->top--; return *s->top; } return -1; } //得到棧頂元素,但不出棧 char charGetTop(charStack *s) { s->top--; char temp = *s->top; s->top++; return temp; } //棧結(jié)構(gòu)體,存放哈夫曼樹結(jié)點 typedef struct { Huffman *base; Huffman *top; int size; }BiStack; //棧初始化 BiStack stackInit() { BiStack s; s.base = (Huffman *)malloc(sizeof(Huffman)*STACK_INIT_SIZE); s.top = s.base; s.size =STACK_INIT_SIZE; return s; } //入棧 void push(BiStack *s, Huffman e) { if(s->top - s->base >= s->size) { s->size += STACK_INCREMENT; s->base = (Huffman *)realloc(s->base, sizeof(Huffman)*s->size); } *s->top = e; s->top++; } //出棧 Huffman pop(BiStack *s) { Huffman temp; s->top--; temp = *s->top; return temp; } //得到棧頂元素,但不出棧 Huffman getTop(BiStack s) { Huffman temp; s.top--; temp = *s.top; return temp; } char stack[7][10]; //記錄a~g的編碼 //遍歷棧,得到字符c的編碼 void traverseStack(charStack s, char c) { int index = c - 'a'; int i = 0; while(s.base != s.top) { stack[index][i] = *s.base; i++; s.base++; } }
?。?)創(chuàng)建哈夫曼樹
'''C //通過雙向鏈表創(chuàng)建哈夫曼樹,返回根結(jié)點指針 Tree creatHuffman(pList head) { pList list1 = NULL; pList list2 = NULL; pList index = NULL; Tree root = NULL; while(head->next != NULL) //鏈表只剩一個結(jié)點時循環(huán)結(jié)束,此結(jié)點數(shù)據(jù)域即為哈夫曼樹的根結(jié)點 { list1 = head; list2 = head->next; index = list2->next; root = (Tree)malloc(sizeof(Huffman)); while(index != NULL) //找到鏈表中權(quán)重最小的兩個結(jié)點list1,list2 { if(list1->root->weight > index->root->weight || list2->root->weight > index->root->weight) { if(list1->root->weight > list2->root->weight) list1 = index; else list2 = index; } index = index->next; } //list1和list2設(shè)為新結(jié)點的左右孩子 if(list2->root->weight > list1->root->weight) { root->lchild = list1->root; root->rchild = list2->root; } else { root->lchild = list2->root; root->rchild = list1->root; } //新結(jié)點字符統(tǒng)一設(shè)為空格,權(quán)重設(shè)為list1與list2權(quán)重之和 root->c = ' '; root->weight = list1->root->weight + list2->root->weight; //list1數(shù)據(jù)域替換成新結(jié)點,并刪除list2 list1->root = root; list2->pre->next = list2->next; if(list2->next != NULL) list2->next->pre = list2->pre; } return head->root; }
?。?)編碼
'''C char stack[7][10]; //記錄a~g的編碼 //遍歷棧,得到字符c的編碼 void traverseStack(charStack s, char c) { int index = c - 'a'; int i = 0; while(s.base != s.top) { stack[index][i] = *s.base; i++; s.base++; } } //通過哈夫曼樹編碼 void encodeHuffman(Tree T) { BiStack bs = stackInit(); charStack cs = charStackInit(); Huffman root = *T; Tree temp = NULL; push(&bs, root); //根結(jié)點入棧 while(bs.top != bs.base) //棧空表示遍歷結(jié)束 { root = getTop(bs); temp = root.lchild; //先訪問左孩子 while(temp != NULL) //左孩子不為空 { //將結(jié)點左孩子設(shè)為空,代表已訪問其左孩子 root.lchild = NULL; pop(&bs); push(&bs, root); //左孩子入棧 root = *temp; temp = root.lchild; push(&bs, root); //'0'入字符棧 charPush(&cs, '0'); } temp = root.rchild; //后訪問右孩子 while(temp == NULL) //右孩子為空,代表左右孩子均已訪問,結(jié)點可以出棧 { //結(jié)點出棧 root = pop(&bs); //尋到葉子結(jié)點,可以得到結(jié)點中字符的編碼 if(root.c != ' ') traverseStack(cs, root.c); charPop(&cs); //字符棧出棧 if(bs.top == bs.base) break; //根結(jié)點出棧,遍歷結(jié)束 //查看上一級結(jié)點是否訪問完左右孩子 root = getTop(bs); temp = root.rchild; } if(bs.top != bs.base) { //將結(jié)點右孩子設(shè)為空,代表已訪問其右孩子 root.rchild = NULL; pop(&bs); push(&bs, root); //右孩子入棧 root = *temp; push(&bs, root); //'1'入字符棧 charPush(&cs, '1'); } } }
?。?)解碼
'''C char stack[7][10]; //記錄a~g的編碼 //遍歷棧,得到字符c的編碼 void traverseStack(charStack s, char c) { int index = c - 'a'; int i = 0; while(s.base != s.top) { stack[index][i] = *s.base; i++; s.base++; } } //通過哈夫曼樹編碼 void encodeHuffman(Tree T) { BiStack bs = stackInit(); charStack cs = charStackInit(); Huffman root = *T; Tree temp = NULL; push(&bs, root); //根結(jié)點入棧 while(bs.top != bs.base) //??毡硎颈闅v結(jié)束 { root = getTop(bs); temp = root.lchild; //先訪問左孩子 while(temp != NULL) //左孩子不為空 { //將結(jié)點左孩子設(shè)為空,代表已訪問其左孩子 root.lchild = NULL; pop(&bs); push(&bs, root); //左孩子入棧 root = *temp; temp = root.lchild; push(&bs, root); //'0'入字符棧 charPush(&cs, '0'); } temp = root.rchild; //后訪問右孩子 while(temp == NULL) //右孩子為空,代表左右孩子均已訪問,結(jié)點可以出棧 { //結(jié)點出棧 root = pop(&bs); //尋到葉子結(jié)點,可以得到結(jié)點中字符的編碼 if(root.c != ' ') traverseStack(cs, root.c); charPop(&cs); //字符棧出棧 if(bs.top == bs.base) break; //根結(jié)點出棧,遍歷結(jié)束 //查看上一級結(jié)點是否訪問完左右孩子 root = getTop(bs); temp = root.rchild; } if(bs.top != bs.base) { //將結(jié)點右孩子設(shè)為空,代表已訪問其右孩子 root.rchild = NULL; pop(&bs); push(&bs, root); //右孩子入棧 root = *temp; push(&bs, root); //'1'入字符棧 charPush(&cs, '1'); } } }
?。?)主函數(shù)
'''C void main() { pList pl = creatList(); printf("字符的權(quán)重如下\n"); for(pList l = pl; l->next != NULL; l = l->next) printf("字符%c的權(quán)重是 %d\n", l->root->c, l->root->weight); Tree T = creatHuffman(pl); encodeHuffman(T); printf("\n\n字符編碼結(jié)果如下\n"); for(int i = 0; i < 7; i++) printf("%c : %s\n", i+'a', stack[i]); char code[100]; printf("\n\n請輸入編碼:\n"); scanf("%s", code); printf("解碼結(jié)果如下:\n"); decodeHuffman(T, code); printf("%s\n", decode); printf("\n\n"); system("date /T"); system("TIME /T"); system("pause"); exit(0); }
2、運轉(zhuǎn)答案如下:
二、實現(xiàn)Python功能
1、代碼解釋
?。?)創(chuàng)建哈夫曼樹
#coding=gbk import datetime import time from pip._vendor.distlib.compat import raw_input #哈夫曼樹結(jié)點類 class Huffman: def __init__(self, c, weight): self.c = c self.weight = weight self.lchild = None self.rchild = None #創(chuàng)建結(jié)點左右孩子 def creat(self, lchild, rchild): self.lchild = lchild self.rchild = rchild #創(chuàng)建列表 def creatList(): list = [] list.append(Huffman('a', 22)) list.append(Huffman('b', 5)) list.append(Huffman('c', 38)) list.append(Huffman('d', 9)) list.append(Huffman('e', 44)) list.append(Huffman('f', 12)) list.append(Huffman('g', 65)) return list #通過列表創(chuàng)建哈夫曼樹,返回樹的根結(jié)點 def creatHuffman(list): while len(list) > 1: #列表只剩一個結(jié)點時循環(huán)結(jié)束,此結(jié)點即為哈夫曼樹的根結(jié)點 i = 0 j = 1 k = 2 while k < len(list): #找到列表中權(quán)重最小的兩個結(jié)點list1,list2 if list[i].weight > list[k].weight or list[j].weight > list[k].weight: if list[i].weight > list[j].weight: i = k else: j = k k += 1 root = Huffman(' ', list[i].weight + list[j].weight) #新結(jié)點字符統(tǒng)一設(shè)為空格,權(quán)重設(shè)為list1與list2權(quán)重之和 if list[i].weight < list[j].weight: #list1和list2設(shè)為新結(jié)點的左右孩子 root.creat(list[i], list[j]) else: root.creat(list[j], list[i]) #list1數(shù)據(jù)域替換成新結(jié)點,并刪除list2 list[i] = root list.remove(list[j]) return list[0]
?。?)編碼
#通過哈夫曼樹編碼 def encodeHuffman(T): code = [[], [], [], [], [], [], []] #列表實現(xiàn)棧結(jié)構(gòu) treeStack = [] codeStack = [] treeStack.append(T) while treeStack != []: #??沾肀闅v結(jié)束 root = treeStack[-1] temp = root.lchild while temp != None: #將結(jié)點左孩子設(shè)為空,代表已訪問其左孩子 root.lchild = None #左孩子入棧 treeStack.append(temp) root = temp temp = root.lchild #0入編碼棧 codeStack.append(0) temp = root.rchild #后訪問右孩子 while temp == None: #右孩子為空,代表左右孩子均已訪問,結(jié)點可以出棧 root = treeStack.pop() #結(jié)點出棧 #尋到葉子結(jié)點,可以得到結(jié)點中字符的編碼 if root.c != ' ': codeTemp = codeStack.copy() code[ord(root.c) - 97] = codeTemp if treeStack == []: #根結(jié)點出棧,遍歷結(jié)束 break codeStack.pop() #編碼棧出棧 #查看上一級結(jié)點是否訪問完左右孩子 root = treeStack[-1] temp = root.rchild if treeStack != []: treeStack.append(temp) #右孩子入棧 root.rchild = None #將結(jié)點右孩子設(shè)為空,代表已訪問其右孩子 codeStack.append(1) #1入編碼棧 return code
?。?)解碼
#通過哈夫曼樹解碼 def decodeHuffman(T, strCode): decode = [] index = 0 while index < len(strCode): #01編碼字符串讀完,解碼結(jié)束 root = T while root.lchild != None: #找到葉子結(jié)點 if index < len(strCode): if strCode[index] == '0': root = root.lchild else: root = root.rchild index += 1 else: break decode.append(root.c) #葉子結(jié)點存放的字符即為解碼得到的字符 return decode
(4)主函數(shù)
if __name__ == '__main__': list = creatList() print("字符的權(quán)重如下") for i in range(len(list)): print("字符{}的權(quán)重為: {}".format(chr(i+97), list[i].weight)) T = creatHuffman(list) code = encodeHuffman(T) print("\n字符編碼結(jié)果如下") for i in range(len(code)): print(chr(i+97), end=' : ') for j in range(len(code[i])): print(code[i][j], end='') print("") strCode = input("\n請輸入編碼:\n") #哈夫曼樹在編碼時被破壞,必須重建哈夫曼樹 list = creatList() T = creatHuffman(list) decode = decodeHuffman(T, strCode) print("解碼結(jié)果如下:") for i in range(len(decode)): print(decode[i], end='') print("\n\n") datetime = datetime.datetime.now() print(datetime.strftime("%Y-%m-%d\n%H:%M:%S")) input("Press Enter to exit…")
2、運行結(jié)果
以上就是關(guān)于哈夫曼編碼的相關(guān)介紹,希望可以為各位讀者帶來一定的幫助。。
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/127609.html
摘要:在計算機信息處理中,哈夫曼編碼是一種一致性編碼法又稱熵編碼法,用于數(shù)據(jù)的無損耗壓縮。構(gòu)造樹時間復(fù)雜度選擇兩個使用頻率較小字符在字符串中出現(xiàn)的次數(shù)的結(jié)點合并生成出一個樹循環(huán)創(chuàng)建哈夫曼樹數(shù)組函數(shù)刪除數(shù)組中的第一個元素,并返回被刪除元素的值。 小草主要博客:http://homeway.me/ 演示網(wǎng)址:http://huffman.sinaapp.com/ 源文件下載地址:http:...
閱讀 923·2023-01-14 11:38
閱讀 895·2023-01-14 11:04
閱讀 756·2023-01-14 10:48
閱讀 2055·2023-01-14 10:34
閱讀 961·2023-01-14 10:24
閱讀 840·2023-01-14 10:18
閱讀 510·2023-01-14 10:09
閱讀 588·2023-01-14 10:02