摘要:描述輸入一個(gè)正整數(shù)和階方陣中的元素,如果找到中的鞍點(diǎn)鞍點(diǎn)的元素值在該行上最大,在該列上最小,就輸出它的下標(biāo)否則,輸出沒有鞍點(diǎn),設(shè)中最多有一個(gè)鞍點(diǎn)。
? 輸入一個(gè)正整數(shù)m(1<= m <= 6)和m階方陣A中的元素,如果找到A中的鞍點(diǎn)(鞍點(diǎn)的元素值在該行上最大,在該列上最?。?,就輸出它的下標(biāo);否則,輸出"NO"(沒有鞍點(diǎn)),設(shè)A中最多有一個(gè)鞍點(diǎn)。
3
1 2 3
0 1 2
0 0 1
2 2
4
1 2 3 4
0 1 1 3
0 0 1 2
1 0 0 1
NO
? ? ? ? 用二維數(shù)組來做這道題會(huì)減小我們的難度。同時(shí),先求出每一行的最大值,再在這一個(gè)元素的這一列來判斷它是不是最小的,對(duì)它們進(jìn)行判斷。最后打印出這個(gè)元素的下標(biāo)就可以了。同時(shí)還要注意,在樣例中輸入4和矩陣?yán)锏脑貢r(shí)發(fā)現(xiàn),有重復(fù)的值(1)的時(shí)候,就算他是最小的,但因?yàn)橹貜?fù),不符合鞍點(diǎn)的定義,所以,還需要判斷是否有重復(fù)的值。另外,題目說明,鞍點(diǎn)最多只有一個(gè)。
#includeint main(void){ int i = 0, j = 0; int arr[6][6] = { 0 }; int max = 0;//定義最大值 int _bool = 0;//標(biāo)簽作用,用來判斷是否有重復(fù)值 //最后當(dāng)_bool=0,說明沒有,_bool=1,說明有 int row = 0, col = 0;//行,列 int m = 0; scanf("%d", &m); for(i = 0; i < m; i++) { for(j = 0; j < m; j++) { scanf("%d", &arr[i][j]); } } //由于不知道最大值,開始假設(shè)第一行第一列元素是最大的 max = arr[0][0]; for(i = 0; i < m; i++)//一行 { //假設(shè)每一行的第一個(gè)元素為最大值 max = arr[i][j]; //尋找每一行的最大值 for(j = 0; j < m; j++) { if(arr[i][j] > max) { //如果是MAX,就記錄它的下標(biāo) //不可以直接用i或j,它們是隨條件在變 //用另一個(gè)量來記錄下標(biāo) row = j; _bool = 1; //記錄最大值,在后面的判斷用 max = arr[i][j]; } } //用來判斷這一行的最大值是否有重復(fù)的 //如果有,_bool=0,不存在鞍點(diǎn) for(j = 0; j < m; j++) { //循環(huán)時(shí)不需要判斷它本身 if(arr[i][j] == max && j != row) { _bool = 0; } } //列的判斷,行滿足后,找列的最小值。 for(j = 0; j < m; j++) { if(arr[i][row] < arr[j][row]) { col = i; } } } if(_bool == 0) { printf("NO/n"); } else { printf("%d %d", row, col); } return 0;}
????????
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://systransis.cn/yun/124774.html
摘要:對(duì)所有參數(shù)更新時(shí)應(yīng)用同樣的學(xué)習(xí)率梯度由許多偏導(dǎo)數(shù)組成,對(duì)應(yīng)著各個(gè)參數(shù)的更新。對(duì)于偏導(dǎo)數(shù)大的,我們希望配個(gè)小的學(xué)習(xí)率給他對(duì)于偏導(dǎo)數(shù)小的,我們希望配個(gè)大的學(xué)習(xí)率給他,這樣各個(gè)參數(shù)都能獲得大致相同的更新幅度,提高網(wǎng)絡(luò)的健壯性。 后續(xù)【DL-CV】更高級(jí)的參數(shù)更新/優(yōu)化(二) 【DL-CV】正則化,Dropout【DL-CV】淺談GoogLeNet(咕咕net) 原版SGD的問題 原味版的S...
摘要:深度神經(jīng)網(wǎng)絡(luò)已經(jīng)成為解決計(jì)算機(jī)視覺語音識(shí)別和自然語言處理等機(jī)器學(xué)習(xí)任務(wù)的較先進(jìn)的技術(shù)。圖深度壓縮的實(shí)驗(yàn)結(jié)果訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)可以被大量剪枝和壓縮的事實(shí)意味著我們當(dāng)前的訓(xùn)練方法具有一些局限性。 深度神經(jīng)網(wǎng)絡(luò)已經(jīng)成為解決計(jì)算機(jī)視覺、語音識(shí)別和自然語言處理等機(jī)器學(xué)習(xí)任務(wù)的較先進(jìn)的技術(shù)。盡管如此,深度學(xué)習(xí)算法是計(jì)算密集型和存儲(chǔ)密集型的,這使得它難以被部署到只有有限硬件資源的嵌入式系統(tǒng)上。為了解決這個(gè)限...
摘要:我認(rèn)為在大多數(shù)深度學(xué)習(xí)中,算法層面上隨機(jī)梯度的下降是大家所認(rèn)可的。但目前似乎存在兩個(gè)問題計(jì)算層面納什平衡達(dá)不到可能會(huì)退化。 去年我一直在研究如何更好地調(diào)整GANs中的不足,但因?yàn)橹暗难芯糠较蛑魂P(guān)注了損失函數(shù),完全忽略了如何尋找極小值問題。直到我看到了這篇論文才有所改變:詳解論文: The Numerics of GANs我參考了Mar的三層分析,并在計(jì)算層面上仔細(xì)考慮了這個(gè)問題:我們這樣做...
閱讀 2649·2023-04-26 02:17
閱讀 1623·2021-11-24 09:39
閱讀 1083·2021-11-18 13:13
閱讀 2660·2021-09-02 15:11
閱讀 2784·2019-08-30 15:48
閱讀 3415·2019-08-30 14:00
閱讀 2445·2019-08-29 13:43
閱讀 666·2019-08-29 13:07