成人国产在线小视频_日韩寡妇人妻调教在线播放_色成人www永久在线观看_2018国产精品久久_亚洲欧美高清在线30p_亚洲少妇综合一区_黄色在线播放国产_亚洲另类技巧小说校园_国产主播xx日韩_a级毛片在线免费

資訊專欄INFORMATION COLUMN

數(shù)據(jù)集:大學(xué)畢業(yè)生收入

Aklman / 2132人閱讀

摘要:數(shù)據(jù)集大學(xué)畢業(yè)生收入下載地址,本文以繪制直方圖為主。整型全年全職在崗人數(shù)。浮點(diǎn)型收入的百分位數(shù)。各大類專業(yè)就業(yè)率圖示結(jié)論相對來說,由于計(jì)算機(jī)的發(fā)展前景,計(jì)算機(jī)與數(shù)學(xué)類的就業(yè)率較高。

數(shù)據(jù)集:大學(xué)畢業(yè)生收入

下載地址,本文以繪制直方圖為主。

1. 字段描述

字段名稱字段類型字段說明
Major_code整型專業(yè)代碼。
Major字符型專業(yè)名稱。
Major_category字符型專業(yè)所屬目錄。
Total整型總?cè)藬?shù)。
Employed整型就業(yè)人數(shù)。
Employed_full_time_year_round整型全年全職在崗人數(shù)。
Unemployed整型失業(yè)人數(shù)。
Unemployment_rate浮點(diǎn)型失業(yè)率。
Median整型收入的中位數(shù)。
P25th整型收入的25百分位數(shù)。
P75th浮點(diǎn)型收入的75百分位數(shù)。

2. 數(shù)據(jù)預(yù)處理

2.1 導(dǎo)包

import numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport osimport warningswarnings.filterwarnings("ignore")

2.2 讀取數(shù)據(jù)

df = pd.read_csv("大學(xué)畢業(yè)生收入數(shù)據(jù)集.csv")

3. 數(shù)據(jù)預(yù)覽

3.1 預(yù)覽數(shù)據(jù)

print(df.head())

結(jié)果

Major_code                                  Major  ...  P25th    P75th0        1100                    GENERAL AGRICULTURE  ...  34000  80000.01        1101  AGRICULTURE PRODUCTION AND MANAGEMENT  ...  36000  80000.02        1102                 AGRICULTURAL ECONOMICS  ...  40000  98000.03        1103                        ANIMAL SCIENCES  ...  30000  72000.04        1104                           FOOD SCIENCE  ...  38500  90000.0

3.2 查看基本信息

df.info()

結(jié)果

RangeIndex: 173 entries, 0 to 172Data columns (total 11 columns): #   Column                         Non-Null Count  Dtype  ---  ------                         --------------  -----   0   Major_code                     173 non-null    int64   1   Major                          173 non-null    object  2   Major_category                 173 non-null    object  3   Total                          173 non-null    int64   4   Employed                       173 non-null    int64   5   Employed_full_time_year_round  173 non-null    int64   6   Unemployed                     173 non-null    int64   7   Unemployment_rate              173 non-null    float64 8   Median                         173 non-null    int64   9   P25th                          173 non-null    int64   10  P75th                          173 non-null    float64dtypes: float64(2), int64(7), object(2)

3.3 查看重復(fù)值

print(df.duplicated().sum())

結(jié)果

0

3.4 查看缺失值

print(df.isnull().sum())

結(jié)果

Major_code                       0Major                            0Major_category                   0Total                            0Employed                         0Employed_full_time_year_round    0Unemployed                       0Unemployment_rate                0Median                           0P25th                            0P75th                            0dtype: int64

4. 數(shù)據(jù)集描述性信息

describe = df.describe()print(describe)

結(jié)果

Major_code         Total  ...         P25th          P75thcount   173.000000  1.730000e+02  ...    173.000000     173.000000mean   3879.815029  2.302566e+05  ...  38697.109827   82506.358382std    1687.753140  4.220685e+05  ...   9414.524761   20805.330126min    1100.000000  2.396000e+03  ...  24900.000000   45800.00000025%    2403.000000  2.428000e+04  ...  32000.000000   70000.00000050%    3608.000000  7.579100e+04  ...  36000.000000   80000.00000075%    5503.000000  2.057630e+05  ...  42000.000000   95000.000000max    6403.000000  3.123510e+06  ...  78000.000000  210000.000000[8 rows x 9 columns]

可在變量視圖中查看describe

5. 數(shù)據(jù)分析

5.1 各專業(yè)種類(Major_category)的專業(yè)分支個(gè)數(shù)

Major_category_counts=df["Major_category"].value_counts()print(Major_category_counts)rects = plt.bar(range(1,17),Major_category_counts);for rect in rects:  #rects 是三根柱子的集合    height = rect.get_height()    plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), size=12, ha="center", va="bottom")interval = ["Engineering","Education","Humanities & Liberal Arts","Biology & Life Science","Business","Health","Computers & Mathematics","Agriculture & Natural Resources","Physical Sciences","Social Science","Psychology & Social Work","Arts","Industrial Arts & Consumer Services","Law & Public Policy","Communications & Journalism","Interdisciplinary"]plt.xticks(range(1,17),interval,rotation=90);plt.title("Number of Branches by Major Category")plt.ylabel("Counts")plt.show()

結(jié)果

Engineering                            29Education                              16Humanities & Liberal Arts              15Biology & Life Science                 14Business                               13Health                                 12Computers & Mathematics                11Agriculture & Natural Resources        10Physical Sciences                      10Social Science                          9Psychology & Social Work                9Arts                                    8Industrial Arts & Consumer Services     7Law & Public Policy                     5Communications & Journalism             4Interdisciplinary                       1Name: Major_category, dtype: int64

圖示

結(jié)論
由于機(jī)械類專業(yè)發(fā)展歷史悠久,故相對來說機(jī)械類專業(yè)分支數(shù)相較其他大類專業(yè)要多

5.2 各大類專業(yè)收入

averageMoney = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Median"][j]    averageMoney.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageMoney);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Annual salary by Major Category")plt.ylabel("Moneys")plt.show()

圖示

結(jié)論
由于機(jī)械類專業(yè)與人工智能、自動(dòng)化等領(lǐng)域相關(guān),故平均工資比較高;計(jì)算機(jī)與數(shù)學(xué)類專業(yè)發(fā)展前景很好,但是小公司工資普遍不高,大公司工資相對來說較高。

5.3 各大類專業(yè)失業(yè)率

averageUnemployRate = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Unemployment_rate"][j]    averageUnemployRate.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageUnemployRate);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Unemployment Rate by Major Category")plt.ylabel("Rate")plt.show()

圖示

結(jié)論
藝術(shù)類專業(yè)由于可變動(dòng)性特別大,加上對人才的要求相對來說較為苛刻,故失業(yè)率較高。

5.4 各大類專業(yè)就業(yè)率

averageEmployRate = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Employed"][j] / df["Total"][j]    averageEmployRate.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageEmployRate);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Employment Rate by Major Category")plt.ylabel("Rate")plt.show()

圖示

結(jié)論
相對來說,由于計(jì)算機(jī)的發(fā)展前景,計(jì)算機(jī)與數(shù)學(xué)類的就業(yè)率較高。

5.5 各大類專業(yè)全年全職在崗率

averageFullTimeRate = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Employed_full_time_year_round"][j] / df["Employed"][j]    averageFullTimeRate.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageFullTimeRate);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Full-Time Rate by Major Category")plt.ylabel("Rate")plt.show()

圖示

5.6 各大類專業(yè)總?cè)藬?shù)

averageNum = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Total"][j]    averageNum.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageNum);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Total Numbers by Major Category")plt.ylabel("Counts")plt.show()

圖示

5.7 就業(yè)失業(yè)比

EUratio = []for i in range(len(interval)):    EUratio.append(averageEmployRate[i]/averageUnemployRate[i])plt.bar(range(1,17),EUratio);plt.xticks(range(1,17),interval,rotation=90);plt.title("Employment-Unemployment Ratio by Major Category")plt.ylabel("Ratio")plt.show()

圖示

結(jié)論
相對來說,農(nóng)業(yè)就業(yè)的門檻低,就業(yè)率高的同時(shí)失業(yè)率低。

6. 完整代碼

# 導(dǎo)包import numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport osimport warningswarnings.filterwarnings("ignore")# 讀取數(shù)據(jù)df = pd.read_csv("大學(xué)畢業(yè)生收入數(shù)據(jù)集.csv")# 預(yù)覽數(shù)據(jù)print(df.head())# 規(guī)范字段名稱(本數(shù)據(jù)集已經(jīng)較為規(guī)范)# 查看基本信息df.info()# 查看重復(fù)值print(df.duplicated().sum())# 查看缺失值print(df.isnull().sum())# 查看數(shù)據(jù)集描述性信息describe = df.describe()print(describe)# 統(tǒng)計(jì)表中每個(gè)專業(yè)種類(Major_category)的個(gè)數(shù)Major_category_counts=df["Major_category"].value_counts()print(Major_category_counts)rects = plt.bar(range(1,17),Major_category_counts);for rect in rects:  #rects 是三根柱子的集合    height = rect.get_height()    plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), size=12, ha="center", va="bottom")interval = ["Engineering","Education","Humanities & Liberal Arts","Biology & Life Science","Business","Health","Computers & Mathematics","Agriculture & Natural Resources","Physical Sciences","Social Science","Psychology & Social Work","Arts","Industrial Arts & Consumer Services","Law & Public Policy","Communications & Journalism","Interdisciplinary"]plt.xticks(range(1,17),interval,rotation=90);plt.title("Number of Branches by Major Category")plt.ylabel("Counts")plt.show()# 對各大類專業(yè)收入作統(tǒng)計(jì)并作圖averageMoney = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Median"][j]    averageMoney.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageMoney);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Annual salary by Major Category")plt.ylabel("Moneys")plt.show()# 對各大類專業(yè)失業(yè)率作統(tǒng)計(jì)并作圖averageUnemployRate = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Unemployment_rate"][j]    averageUnemployRate.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageUnemployRate);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Unemployment Rate by Major Category")plt.ylabel("Rate")plt.show()# 對各大類專業(yè)就業(yè)率作統(tǒng)計(jì)并作圖averageEmployRate = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Employed"][j] / df["Total"][j]    averageEmployRate.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageEmployRate);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Employment Rate by Major Category")plt.ylabel("Rate")plt.show()# 對各大類專業(yè)全年全職在崗率作統(tǒng)計(jì)并作圖(沒有早退的)averageFullTimeRate = []for i in range(len(interval)):    sum = 0    for j in range(173):        if df["Major_category"][j] == interval[i]:            sum = sum + df["Employed_full_time_year_round"][j] / df["Employed"][j]    averageFullTimeRate.append(sum/Major_category_counts[i])plt.bar(range(1,17),averageFullTimeRate);plt.xticks(range(1,17),interval,rotation=90);plt.title("Average Full-Time Rate            
               
                                           
                       
                 

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://systransis.cn/yun/121287.html

相關(guān)文章

  • 畢業(yè)工作幾年,月入還不到2萬的建議速看

    摘要:中國的行業(yè)的蓬勃發(fā)展,蛋糕之大,讓所有行業(yè)從業(yè)者的收入總體處于行業(yè)前列,可比擬的只有金融行業(yè)一個(gè)不創(chuàng)造財(cái)富,只分配財(cái)富的行業(yè)。每天收到十幾份簡歷,卻招聘不到合適的人。很多小伙伴冷門專業(yè),普通學(xué)校,畢業(yè)了工作幾年了月薪還是幾千塊,這就是現(xiàn)狀。 ? ? ?? ? ? ?中國的IT行業(yè)因?yàn)橛腥丝诟?..

    wmui 評論0 收藏0
  • 畢業(yè)后,他百萬年薪,我十萬年薪,有時(shí)候選擇比努力更重要

    摘要:我想說的是,有時(shí)候選擇比努力更重要。未來職業(yè)的選擇是我們在畢業(yè)后面對的人生中第一次重大選擇,它與我們未來幾十年的人生走向有著莫大關(guān)系。就這樣,幾年過去了,幾十年又過去了,同齡人之間的差距便會凸顯出來越來越大。 大家都知道程序員這個(gè)行業(yè),目前是站在風(fēng)口上的,薪資待遇可以說是高于其他多數(shù)行業(yè),但...

    馬永翠 評論0 收藏0
  • 小馬哥Java項(xiàng)目實(shí)戰(zhàn)訓(xùn)練營 極客大學(xué)

    摘要:根據(jù)公司的調(diào)查,計(jì)算機(jī)科學(xué)專業(yè)在所有專業(yè)的前五年職業(yè)生涯的基礎(chǔ)薪資中位數(shù)中占據(jù)第一位,約為萬美元。市場現(xiàn)狀,產(chǎn)品背景十三五規(guī)劃對應(yīng)年,大方向是加快壯大戰(zhàn)略性新興產(chǎn)業(yè),打造經(jīng)濟(jì)社會發(fā)展新引擎。 極客時(shí)間是極客邦科技出品的IT類知識服務(wù)產(chǎn)品,內(nèi)容包含專欄訂閱、極客新聞、熱點(diǎn)專題、直播、視頻和音頻等多種形式的知識服務(wù)。極客時(shí)間服...

    codeGoogle 評論0 收藏0
  • 小馬哥Java項(xiàng)目實(shí)戰(zhàn)訓(xùn)練營 極客大學(xué)

    摘要:根據(jù)公司的調(diào)查,計(jì)算機(jī)科學(xué)專業(yè)在所有專業(yè)的前五年職業(yè)生涯的基礎(chǔ)薪資中位數(shù)中占據(jù)第一位,約為萬美元。市場現(xiàn)狀,產(chǎn)品背景十三五規(guī)劃對應(yīng)年,大方向是加快壯大戰(zhàn)略性新興產(chǎn)業(yè),打造經(jīng)濟(jì)社會發(fā)展新引擎。 ??????百????度網(wǎng)盤??提取碼:u6C4?極客時(shí)間是極客邦科技出品的IT類知識服務(wù)產(chǎn)品,內(nèi)容包含專欄訂閱、極客新聞、熱點(diǎn)專題...

    jcc 評論0 收藏0
  • 開學(xué)了,計(jì)算機(jī)的大學(xué)生們,送你們一篇經(jīng)書,希望你們的四年不負(fù)年華!

    摘要:作為十幾年的老開發(fā)者,今天我來分享一下,我個(gè)人認(rèn)為的大學(xué)計(jì)算機(jī)相關(guān)專業(yè)該怎么學(xué),希望你們的四年能夠不負(fù)年華。粉絲專屬福利九關(guān)于考研有能力去考研的,我建議去嘗試一下考研,理由有以下幾點(diǎn)第一,畢業(yè)就工作的人,前三年還處于摸索和定性的階段。 ...

    duan199226 評論0 收藏0

發(fā)表評論

0條評論

閱讀需要支付1元查看
<