回答:pandas是python一個(gè)非常著名的數(shù)據(jù)處理庫(kù),內(nèi)置了大量函數(shù)和類型,可以快速讀取日常各種文件,包括txt,csv,excel,json,mysql等,為機(jī)器學(xué)習(xí)模型提供樣本輸入(包括數(shù)據(jù)預(yù)處理等),下面我簡(jiǎn)單介紹一下這個(gè)庫(kù)的使用,以讀取這5種類型文件為例:txt這里直接使用read_csv函數(shù)讀取就行(早期版本中可以使用read_table函數(shù)),測(cè)試代碼如下,非常簡(jiǎn)單,第一個(gè)參數(shù)為讀取的t...
回答:如果面試官始終問你,機(jī)器學(xué)習(xí)是什么?要學(xué)什么課程?發(fā)展方向是什么?諸如此類泛泛的問題,這說明他機(jī)器學(xué)習(xí)水平一般。如果面試官問你,人工神經(jīng)網(wǎng)絡(luò)、貝葉斯學(xué)習(xí)主要研究什么?Boosting與Bagging算法的主要區(qū)別是什么?這說明他對(duì)機(jī)器學(xué)習(xí)還算了解。如果他給你如下三張圖,并讓你指出每張的含義,現(xiàn)場(chǎng)用計(jì)算機(jī)編程,或者搜一段算法程序,估計(jì)你要很重視他了,應(yīng)當(dāng)是個(gè)高手??偨Y(jié):千萬不要小看面試官,即使他是個(gè)...
回答:在日常開發(fā)運(yùn)維工作中,經(jīng)常會(huì)遇到多臺(tái)服務(wù)器上的數(shù)據(jù)同步問題,特別是集群部署時(shí),如果不是自動(dòng)化同步數(shù)據(jù),全靠人工同步那工作量就會(huì)很大。Linux的文件同步工具 RsyncRsync是Linux系統(tǒng)下的一款數(shù)據(jù)備份工具,使用它可以增量備份,不光光支持本地復(fù)制還支持遠(yuǎn)程同步,功能十分強(qiáng)大。1、Rsync優(yōu)點(diǎn):Rsync在第一次同步時(shí)是全量同步,后面同步時(shí)只會(huì)傳輸修改過的文件;在傳輸過程中還可以進(jìn)行壓縮傳...
...好的解決了R的大數(shù)據(jù)級(jí)瓶頸問題。 SparkR也支持分布式的機(jī)器學(xué)習(xí)算法,比如使用MLib機(jī)器學(xué)習(xí)庫(kù)。 什么是Docker 參考前文 打造數(shù)據(jù)產(chǎn)品的快速原型:Shiny的Docker之旅,我們也可以知道,Docker是一種類似于虛擬機(jī)的技術(shù),主要解決...
關(guān)于機(jī)器學(xué)習(xí)的11個(gè)開源工具 翻譯:瘋狂的技術(shù)宅英文標(biāo)題:11 open source tools to make the most of machine learning英文連接:https://www.infoworld.com/art...本文首發(fā)于微信公眾號(hào):充實(shí)的腦洞 使用這些多樣化、易于實(shí)現(xiàn)的庫(kù)和框架,挖掘...
前言 numpy對(duì)python的意義非凡,在數(shù)據(jù)分析與機(jī)器學(xué)習(xí)領(lǐng)域?yàn)閜ython立下了汗馬功勞?,F(xiàn)在用python搞數(shù)據(jù)分析或機(jī)器學(xué)習(xí)經(jīng)常使用的pandas、matplotlib、sklearn等庫(kù),都需要基于numpy構(gòu)建。毫不夸張地說,沒有numpy,python今天在數(shù)據(jù)分...
機(jī)器學(xué)習(xí)本質(zhì)包含了數(shù)學(xué)原理推導(dǎo)與實(shí)際應(yīng)用技巧 推論事情的方法:演繹法和歸納法。根據(jù)經(jīng)驗(yàn)進(jìn)行推論,就像人成長(zhǎng)一樣。 基礎(chǔ): 機(jī)器學(xué)習(xí)的目的是:歸納(Induction), 從詳細(xì)事實(shí)到一般推論 找出有效的預(yù)測(cè)模型 一開始都...
ChatGPT和Sora等AI大模型應(yīng)用,將AI大模型和算力需求的熱度不斷帶上新的臺(tái)階。哪里可以獲得...
大模型的訓(xùn)練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關(guān)性能圖表。同時(shí)根據(jù)訓(xùn)練、推理能力由高到低做了...